
CSE 116, Fall 2019 Final

Section Points Score
Part I 35 points
Part II 36 points
Part III 97 points
Total 168 points

Instructions

• You have 180 minutes to complete this exam.

• This exam is closed book. You may use one double-sided page of notes, but no other
materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions
about the content of the exam. If you are unsure of how to interpret a problem
description, state your interpretation clearly and concisely. Reasonable interpretations
will be taken into account by graders.

NAME: __

CruzID: _______________________________ @ucsc.edu

1

Part I: Lambda calculus
1. [5pts] What are the free variables of the lambda calculus expression

(\a -> a (\b -> c) (\d e -> a d)) (\h i -> g)

(a) b, e, h, i
(b) a, b, d, e, h, i
(c) a, c, d, g
(d) a, c, g
(e) c, g
(f) None of the above

ANSWER E: c, g

2. [14pts] Use β-reductions to evaluate the following lambda terms to a normal form.

(A) (\x y -> x y (\a b -> a)) (\c d -> c) (\e f -> f) Rubric:
• 0 pts : no attempt or nothing correct.
• 1 pts : anything correct (e.g., one reduction)
• 2-5 pts : more than one thing correct (e.g., two reductions), few things incorrect
• 6 pts : almost correct, but one smallish error
• 7 pts : completely correct

(B) (\z x y -> x y (z y)) (\a -> a (\b c -> c) (\d e -> d)) (\f g -> g) (\h i -> i)

• (\x y -> x y ((\a -> a (\b c -> c) (\d e -> d)) y)) (\f g -> g) (\h i -> i)

• (\y -> (\f g -> g) y ((\a -> a (\b c -> c) (\d e -> d)) y)) (\h i -> i)

• ((\f g -> g) (\h i -> i) ((\a -> a (\b c -> c) (\d e -> d)) (\h i -> i)))

• ((\g -> g) ((\a -> a (\b c -> c) (\d e -> d)) (\h i -> i)))

• (\h i -> i) (\b c -> c) (\d e -> d)

• (\i -> i) (\d e -> d)

• (\d e -> d)

Rubric:
• 0 pts : no attempt or nothing correct.
• 1 pts : anything correct (e.g., one reduction)
• 2-5 pts : more than one thing correct (e.g., two reductions), few things incorrect
• 6 pts : almost correct, but one smallish error
• 7 pts : completely correct

2

3. [16pts] We can represent lists in lambda calculus using PAIR and FALSE. For example,
the Haskell list [0, 1, 2] can be represented in Lambda Calculus as

PAIR ZERO (PAIR ONE (PAIR TWO FALSE))

and functions like Haskell’s head and tail can be implemented by FST and SND, respec-
tively. In the Haskell cheat sheet, you will also find EMPTY, which returns TRUE if applied
to an empty list

EMPTY FALSE =~> TRUE

and returns FALSE otherwise:

EMPTY (PAIR ZERO (PAIR ONE (PAIR TWO FALSE))) =~> FALSE

Fill in a lambda calculus expression for each blank in the program below to define a
function FILTER such that for a predicate function p and a list l, (FILTER p l) returns
a list containing every element v of l such that (p v) =~> TRUE. You may use any of
the functions defined on the Lambda Calculus Cheat Sheet on the back page.

let FILTER1 = \f p l -> ITE (EMPTY l)
FALSE
ITE (p (FST l))

(PAIR (FST l) (f p (SND l)))
(f p (SND l))

let FILTER = FIX FILTER1

(A)

(B)

(C)

(D)

(E)

(F)

3

Part II: Nano
Consider the following grammar and operational semantics, and type system for Nano1.
Grammar
e ::= v

| e1 e2

v ::= x | n
| \x -> e

Operational semantics

e1 => e1'
[App-L] ----------------

e1 e2 => e1' e2

e => e'
[App-R] ------------

v e => v e'

[App] (\x -> e) v => e[x := v]

e1 => e1'
[Add-L] --------------------

e1 + e2 => e1' + e2

e2 => e2'
[Add-R] --------------------

n1 + e2 => n1 + e2'

[Add] n1 + n2 => n where n == n1 + n2

e1 => e1'
[Let-Def] --------------------------------------

let x = e1 in e2 => let x = e1' in e2

[Let] let x = v in e2 => e2[x := v]

4

4. [21pts] Below are partial proofs that the expression (\x -> \y -> x + y) (1+1) 6
evaluates to 8. For each blank, fill in a typing rule or expression to complete the proof.

• [Add] --------
1+1 => 2

[__a__] ---
(\x -> \y -> x + y) (1+1) => (\x -> \y -> x + y) 2

[__b__] --
(\x -> \y -> x + y) (1+1) 6 => (\x -> \y -> x + y) 2 6

• [__c__] --------------------------------
(\x -> \y -> x + y) 2 6 => __d__

• [__e__] --------------
__f__ => 2 + 6

• [__g__] ----------
2 + 6 => 8

(A) App-R
(B) App-L
(C) App
(D) (\y -> 2 + y) 6

(E) App
(F) (\y -> 2 + y) 6

(G) Add

5

5. [5pts] What is the most general unifier of the following two types (where a,b,c are
type variables)?

(a -> b) -> b -> [a] -> b
(c -> Bool) -> a -> [c] -> [c]

(a) [a / Bool, b / Bool, c / Bool]

(b) [a / Bool, b / [Bool], c / Bool]

(c) [a / [Bool], b / [Bool], c / Bool]

(d) [a / c, b / [c]]

(e) None of the above
(f) Cannot unify

6. [5pts] What is the most general unifier of the following two types (where a,b,c are
type variables)?

(a -> b) -> [a] -> b
(c -> b) -> [c] -> [c]

(a) [b / c, a / b, c / b]

(b) [a / Bool, b / [Bool], c / Bool]

(c) [a / [Bool], b / [Bool], c / Bool]

(d) [a / c, b / [c]]

(e) None of the above
(f) Cannot unify

7. [5pts] What is the result of applying the following substitution?

[a / f, b / d, d / (e,e), f / (e -> c)] forall a. forall b. (d -> e -> f) -> (a -> b)

forall a. forall b. ((e,e) -> e -> (e -> c)) -> (a -> b)

6

Part III: Haskell

8. [5pts] Given the following definition of foo:

foo a b =
let c = \a -> b ++ a in

let b = a ++ (c a) in
c (bar b)

where
bar e = e ++ a ++ b

what does the expression foo "x" "o" evaluate to?

(a) "xxxooo"

(b) "oxoxxo"

(c) "xxooxo"

(d) "xoxoxo"

(e) "oxoxox"

(f) None of the above

9. [5pts] What does this Haskell expression evaluate to? (See Haskell cheat sheet for
definition of map.)

map (\(x,y) -> x : [y]) [(0 ,1) ,(2 ,3) ,(4 ,5)]

(a) Type error
(b) [0,1,2,3,4,5]

(c) [[0],[1],[2],[3],[4],[5]]

(d) [[0,1],[2,3],[4,5]]

(e) [[0,1,2,3,4,5]]

(f) None of the above

10. [5pts] What does this Haskell expression evaluate to? (See Haskell cheat sheet for
definition of foldl.)

foldl (:) [] ["a", "b", "c", "d"]

(a) Type error
(b) "abcd"

(c) "dcba"

(d) ["a","b", "c", "d"]

(e) ["d","c", "b", "a"]

(f) None of the above

7

11. [5pts] What does this Haskell expression evaluate to? (See Haskell cheat sheet for
definition of filter.)

filter (\(x, y) -> x + y > 5) [(1,3), (2,4), (3,5), (5,0), (4,1)]

(a) Type error
(b) (6,8)

(c) (2,4,3,5)

(d) [6, 8]

(e) [(2,4), (3,5)]

(f) None of the above

Answer: E

12. [5pts] Recall that (.) is the infix operator for compose, so (f.g) x is the same as
writing f (g x). What does the following Haskell program evaluate to? (See the
Haskell cheat sheet for types and definitions of the functions used below.)

(foldr (+) 0 . map (\x -> x*2) . filter even) [1,2,3,4,5]

(a) Type error
(b) 30
(c) 24
(d) 12
(e) 20
(f) None of the above

Answer: D

13. [5pts] What is the most general type of the Haskell function foo?

foo x y z = bar x y (z+1)
where

bar = \w u -> u w

(a) Num c => a -> b -> c -> a

(b) Num c => (b -> c -> a) -> b -> c -> a

(c) Num b => a -> (a -> b -> c) -> b -> c

(d) Num b => (a -> b -> c -> d) -> a -> b -> c -> d

(e) Type error
(f) None of the above

Answer: C

8

For the following questions, consider the data types defined below.

data Binop = Add | Sub | Mul

data Expr = Num Int
| Var String
| Bin Binop Expr Expr
| Let String Expr Expr

14. [15pts] A case expression is exhaustive if all possible values are matched by at least
one pattern. A pattern is overlapping if previous patterns match all values it matches.
Assume t has type Expr and do the following:

• For each pattern in each case, provide a value that matches on the pattern.
• If the pattern is overlapped by a previous pattern, write “overlapped”.
• Determine if the case expression is exhaustive and circle Exhaustive or Non-exhaustive
as appropriate.

• For non-exhaustive case expressions, write a value that does not match any of its
patterns.

For example, the following patterns are non-exhaustive:

case t of

_Num 4___________ Num n -> ()

_Var "x"_______________ Var x -> ()

_overlapped_______________ Var _ -> ()

Bin Mul (Var "x") (Num 1) Bin _ x y -> ()

_Let "x" (Num 1) (Num 2)__ Let id _ (Num y) -> ()

_Let "x" (Num 1) (Var "y")__ [Exhaustive / ((Non -exhaustive))]

9

(a) case t of

_______________________ Var foo -> ()

_______________________ Bin op x y -> ()

_______________________ Let x e1 e2 -> ()

_______________________ Num n -> ()

_______________________ _ -> ()

_______________________ [Exhaustive / Non -exhaustive]

(b) case t of

_______________________ Num 1 -> ()

_______________________ _ -> ()

_______________________ [Exhaustive / Non -exhaustive]

10

(c) case t of

_______________________ Bin Add (Var x) (Var y)
| x ++ y == "foobar" -> ()

_______________________ Bin Add x y -> ()

_______________________ Let _ _ _ -> ()

_______________________ Var x -> ()

_______________________ Num x -> ()

_______________________ [Exhaustive / Non -exhaustive]

11

Consider the datatype below for a tree where each internal node has a value (of type
a) and two child subtrees, eventually terminating with a leaf node.

data Tree a = Leaf | Node a (Tree a) (Tree a)

15. [2pts] What is the most general type of the value t?

t = (Node "foo"
(Node "bar" (Node "baz" Leaf Leaf) Leaf)
(Node "qux" Leaf (Node "quux" Leaf Leaf)))

Tree String or Tree Char

16. [10pts] Implement a fold for the Tree datatype so that foldTree (++) "" t evaluates
to ""foobarbazquxquux". You may only use library functions that appear in the Haskell
cheat sheet or elsewhere in the exam.

foldTree :: (a -> b -> b) -> b -> Tree a -> b

foldTree f d Leaf = d
foldTree f d (Node v l r) = f v (foldTree f (foldTree f d r) l)

17. [5pts] Implement maxIntTree, which returns the largest Int in a tree of integers (or
0 for an empty tree). You may only use library functions that appear in the Haskell
cheat sheet or elsewhere in the exam.

maxIntTree :: Tree Int -> Int

maxIntTree = foldTree max 0

18. [5pts] Now implement maxTree, a version of maxIntTree that works for any kind of
tree. That is, for a tree of type Tree a, it returns the maximum value or a default value
for the empty tree. You may only use library functions that appear in the Haskell cheat
sheet or elsewhere in the exam. You must also specify the type of your implementation.
Note that the tree elements may appear in any order—do not assume the tree is a BST.
maxTree :: Ord a => a -> Tree a -> a
maxTree d = foldTree max d

19. [10pts] Implement joinTree which creates a single tree out of two trees by replacing
the left-most leaf node of the second tree.
For example, the output of joinTree (Node "boo" Leaf Leaf) t should return

(Node "foo"
(Node "bar" (Node "baz"(Node "boo" Leaf Leaf) Leaf) Leaf)
(Node "qux" Leaf (Node "quux" Leaf Leaf)))

joinTree :: Tree a -> Tree a -> Tree a

joinTree t Leaf = t
joinTree t (Node v l r) = Node v (joinTree t l) r

12

20. [20pts] Implement a filter function for the Tree datatype which takes a predicate
and a tree and returns a tree containing only the values for which the predicate was
true. For example, filterTree (\x -> length x >= 4) t should return

(Node "quux" Leaf Leaf)

and filterTree (\x -> x /= "foo") t should return

(Node "qux" (Node "bar" (Node "baz" Leaf Leaf) Leaf)
(Node "quux" Leaf Leaf))

You may only use library functions that appear in the Haskell cheat sheet or elsewhere
in the exam.

filterTree :: (a -> Bool) -> Tree a -> Tree a

filterTree p Leaf = Leaf
filterTree p (Node v l r) | p v =

Node v (filterTree p l) (filterTree p r)
filterTree p (Node v l r) | otherwise =

case filterTree p l of
Leaf -> filterTree p r
fl -> case filterTree p r of

Leaf -> fl
fr -> joinTree fl fr

13

14

1 Lambda calculus cheat sheet

-- Booleans --------------------------------
let TRUE =\x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Numbers ---------------------------------
let ZERO = \f x-> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x))
let FIVE = \f x -> f (f (f (f (f x))

-- Pairs -----------------------------------
let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Lists -----------------------------------
let EMPTY = \xs -> xs (\x y z -> FALSE) TRUE
let CONS = PAIR
let NIL = FALSE
let HEAD = FST
let TAIL = SND

-- Arithmetic ------------------------------
let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> -- return TRUE if n == 0 --
let DECR = \n -> -- decrement n by one --
let EQL = \a b -> -- return TRUE if a == b, otherwise FALSE --

-- Recursion -------------------------------
let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

15

2 Haskell cheat sheet

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs

where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = x : filter pred xs
| otherwise = filter pred xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

even :: (Integral a) => a -> Bool
(==) :: Eq a => a -> a -> Bool
max :: Ord a => a -> a -> a
(<) :: Ord a => a -> a -> Bool
(>) :: Ord a => a -> a -> Bool
(>=) :: Ord a => a -> a -> Bool
(<=) :: Ord a => a -> a -> Bool

16

	Lambda calculus cheat sheet
	Haskell cheat sheet

