CSE 114A Midterm 2, Winter 2024

NAME : <P1'vt ‘3%/»-11?#/

CruzID: @ucsc.edu

« DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO

¢ You have 90 minutes to complete this exam.

e Where limits are given, write no more than the amount specified.

¢ You may refer to a double-sided cheat sheet, but no electronic materials.
¢ Avoid seeing anyone else’s work or allowing yours to be seen.

¢ Do not communicate with anyone but an exam proctor.

o If you are unsure of how to interpret a problem description, state your
interpretation clearly and concisely. Reasonable interpretations will be
taken into acount by the graders.

¢ Good luck!

Q1: Scope
What are the free variables of this A\-term?

(\b >a (\a>c) (\de >ad)) (\bhi->g)

Answer: _ C/) q/

Q2: Reductions

Evaluate this A-term to a normal form. Reminder:

o =a> stands for an a-step (a-renaming)
e =b> stands for a S-step (S-reduction)

N\z x >x2z) (xy)

o (izb5vz) [¥y)

—b> Xl - b[%‘j')

Q3: Haskell filter

What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of filter.)

filter (\(x,y) -> x <y) [(0,5), (4,3), (4,5)]

Answer: r(\o'5> (Lllgl>:‘

Q4: Haskell map

What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of map.)

map (\(x,y) ->x +y) [(0,1), (2,3), (4,5)]

Answer: E l(. \/:1 Q]

Q5: Haskell fold 1

What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of foldr.)

foldr () [(0,0)] [(031), (2)3): (435)]

Answer: | L0, 0) (2,3) (l’lgg> (D/O>j

Q6: Haskell fold 2

What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of foldr.)

foldl (-) 10 [1,2,3]

Answer: L_\

A}

Q7: Haskell fold 3

What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of foldr.)

foldr (-) 10 [1,2,3]

—3

Answer:

Q8: Haskell data types
Consider the datatype below for a tree.

data Tree = Leaf
| Node Int Tree Tree

Complete the following function definition so that it returns the maximum
integer in a tree, or returns 0 for the empty tree. (The function max returns the
maximum of its two integer arguments.)

maxIntTree :: Tree -> Int

maxIntTree Leaf = {)

maxIntTree (Node n 1 r)

maxn (max (Mmoo U)
(MreZptfre ‘f’))

Q9: Haskell data types (continued)

Complete the following function definition so that it converts a Tree into a
String matching the following examples. Pay attention to including the right
parentheses and spacing. Remember that (++) concatenates Strings, and (show
n) converts an Int n into a String. It is ok if your code splits up over multiple
lines.

-— Ezamples:

-- treeTolList Leaf returns "Leaf"

-- treeToList (Node 4 Leaf Leaf) returns "(Node 4 Leaf Leaf)"
-— treeToList (Node 3 (Node 4 Leaf Leaf) (Node 5 Leaf Leaf))
-- returns "(Node 3 (Node 4 Leaf Leaf) (Node 5 Leaf Leaf))"

treeToList :: Tree -> String

\lM”
treeToList Leaf =

1 u «
ottt dhowo n £t AF

(74

b blk Lot ff
MU%’ N U)‘I

treeToList (Node n 1 r)

Q10: Haskell data types (continued)

Consider the function:

m :: (Int -> Int) -> Tree -> Tree
m f Leaf = Leaf
mf (Nodenlrzr) =DNode (fn) (mf1l) (mf r)

What does the following expression evaluate to?

m (\x -> x*2+1) (Node 2 Leaf (Node 3 Leaf (Node 4 Leaf Leaf)))

e okt &ty (i 7 Losy (0 L U
“1)

Q11: Interpreters
Consider the following (strange!) interpreter for a small language:

= Num Int
| Add Exp Exp
| Mul Exp Exp

data Exp

eval :: Exp -> Int
eval (Num n) = n
eval (Add el e2)
eval (Mul el e2)

(eval el) * (eval e2)
(eval el) - (eval e2)

What does the following expression evaluate to?

eval (Add (Mul (Num 10) (Num 5)) (Num 10))

Answer: 6 O

Haskell Cheat Sheet

Here is a list of definitions you may find useful:

foldr :: (a->b ->Db) -=>b ->[a] > b
foldr £ b [] =b
foldr £ b (x:xs) = £ x (foldr £ b xs)

foldl :: (b ->a ->b) ->b -> [a] > b

foldl £ b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]

filter pred [] =[]
filter pred (x:xs)
| pred x = x : filter pred xs

| otherwise filter pred xs

map :: (a -> b) -> [a] -> [b]
map _ [] =[]
map f (x:xs) = f x : map f xs

flip :: (&a -=>b > ¢c) > b ->a > c¢
flipfxy=£fyx

(++) :: [a] —> [a] —> [a]
++) [ys = ys
(++) (x:xs) ys = x : Xs ++ ys

even :: (Integral a) => a -> Bool
(==) :: Eqa =>a ->a -> Bool
max :: Ord a => a -> a -> a

(<) :: 0rd a=>a ->a -> Bool
(>) :: 0rd a=>a ->a -> Bool
(>=) :: Ord a => a -> a —> Bool
(<=) :: 0rd a => a -> a -> Bool

	Q1: Scope
	Q2: Reductions
	Q3: Haskell filter
	Q4: Haskell map
	Q5: Haskell fold 1
	Q6: Haskell fold 2
	Q7: Haskell fold 3
	Q8: Haskell data types
	Q9: Haskell data types (continued)
	Q10: Haskell data types (continued)
	Q11: Interpreters
	Haskell Cheat Sheet

