
CSE114A, Winter 2025: Midterm Exam

Instructor: Lindsey Kuper

February 18, 2025

Student name:

CruzID: @ucsc.edu

This exam has 17 questions and 100 total points.

Instructions

• Please write directly on the exam.

• For short answer questions, please write your answer in the provided boxes. You can use space
outside of the boxes as scratch space, but we won’t see or grade it.

• For multiple choice questions, please completely fill in the circle for the correct choice.

• You have 95 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communi-
cate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about the
content of the exam. If you are unsure of how to interpret a problem description, state your inter-
pretation clearly and concisely. Reasonable interpretations will be taken into account by graders.

• We will give partial credit for partially correct answers when it makes sense to do so. A
partially correct answer is better than leaving an answer blank.

Good luck!

i



This page is for your use as scratch space. Anything you write here will be ungraded.



Part 1: Lambda Calculus
1. (5 points) A lambda calculus expression is in normal form if it cannot be further reduced. Evaluate

the following lambda calculus expression to normal form using a series of β-reduction steps (and
only β-reduction steps – you shouldn’t need anything else). Start each line with =b>, as if you were
using Elsa, and do just one β-reduction step per line.

Note: There may be multiple correct ways to reduce the expression. A correct solution is any solution
that Elsa would accept as correct.

(\p q r -> r (p q)) ((\x y -> x y) (\z -> z)) (\s -> s)



For the next three questions, you may use any of the helper functions defined in the provided lambda
calculus reference at the end of the exam.

2. (4 points) Define a lambda calculus function PAIRTRUE that takes a PAIR of two Booleans as its
argument and returns TRUE if both Booleans are TRUE, and FALSE otherwise. For example, in
Elsa:

PAIRTRUE (PAIR TRUE TRUE) =˜> TRUE
PAIRTRUE (PAIR TRUE FALSE) =˜> FALSE
PAIRTRUE (PAIR FALSE TRUE) =˜> FALSE
PAIRTRUE (PAIR FALSE FALSE) =˜> FALSE

You may assume that PAIRTRUE is only called with PAIRs of Booleans.

let PAIRTRUE =

3. (4 points) Define a lambda calculus function PAIRTWO that takes a PAIR of two Church numerals
as its argument and returns TRUE if they sum to TWO, and FALSE otherwise. For example, in Elsa:

PAIRTWO (PAIR ONE ONE) =˜> TRUE
PAIRTWO (PAIR ZERO TWO) =˜> TRUE
PAIRTWO (PAIR TWO ZERO) =˜> TRUE
PAIRTWO (PAIR ONE ZERO) =˜> FALSE
PAIRTWO (PAIR ZERO ONE) =˜> FALSE

You may assume that PAIRTWO is only called with PAIRs of Church numerals.

let PAIRTWO =

Page 2



4. We can encode lists in lambda calculus using pairs, as follows:

let NIL = \x -> TRUE
let CONS = PAIR
let HEAD = FST
let TAIL = SND
let ISNIL = \lst -> lst (\h t -> FALSE)

The list constructors are NIL and CONS. NIL is the empty list, and a non-empty list consists of a pair
of a list element and a list. For instance, (CONS ONE (CONS TWO (CONS THREE NIL))) is
the equivalent of the Haskell list [1, 2, 3]. The ISNIL function takes a list and returns TRUE
if it is NIL and FALSE otherwise.

Define a lambda calculus function LENGTH that takes a list encoded in this way and returns its length
as a Church numeral. You may assume that LENGTH is called with a list constructed with NIL or
CONS. You must use recursion for full credit.

let LENGTH1 = \rec -> \lst -> ITE _____(part 4(a))_______
_____(part 4(b))_______
_____(part 4(c))_______

let LENGTH = ______(part 4(d))_______

a. (5 points) 4(a):

b. (5 points) 4(b):

c. (5 points) 4(c):

d. (5 points) 4(d):

Page 3



Part 2: Haskell

The Haskell reference at the end of the exam has information about library functions used in this
section.

5. (4 points) What is the type of the following Haskell expression?

\x y -> ["oliver", "angie", x, y]

⃝ Type error

⃝ [String]

⃝ [String] -> [String] -> [String]

⃝ String -> String -> [String]

⃝ [a] -> [a] -> [String]

⃝ a -> a -> [String]

6. (4 points) What is the type of the following Haskell expression?

(\x y -> ["sunny", "coco", x, y]) ""

⃝ Type error

⃝ [String]

⃝ String -> [String]

⃝ [String] -> [String]

⃝ a -> [String]

⃝ [a] -> [String]

7. (4 points) What is the type of the following Haskell expression?

\x -> if x == "waldo" then Just "loki" else Nothing

⃝ Type error

⃝ String -> String

⃝ Maybe String -> Maybe String

⃝ Maybe String -> String

⃝ String -> Maybe String

8. (4 points) What is the type of the following Haskell expression?

map (\x -> [x, "kira", "juno"])

⃝ Type error

⃝ [String] -> [[String]]

⃝ String -> [[String]]

⃝ [String] -> [String]

⃝ String -> [String]

Page 4



9. (4 points) What is the type of the following Haskell expression?

\x y -> (x + x) == 3

⃝ Eq a => a -> b -> Bool

⃝ (Eq a, Num a) => a -> b -> Bool

⃝ Eq a => a -> a -> Bool

⃝ (Eq a, Num a) => a -> a -> Bool

10. (4 points) What is the type of the following Haskell expression?

map (\x -> [Nothing, x, Nothing]) [False, True, False]

⃝ Type error

⃝ [Bool]

⃝ [Maybe Bool]

⃝ [[Bool]]

⃝ [[Maybe Bool]]

11. (5 points) What does the following Haskell expression evaluate to?

map (\x y -> x == 3) [1, 2, 3]

12. (5 points) What does the following Haskell expression evaluate to?

foldr (\x y -> "hello" ++ x ++ y) "" ["cupid", "mischief"]

Page 5



Part 3: Working with Abstract Syntax Trees

For the next four questions, we’ll use the following LCExpr data type, which defines a grammar of
abstract syntax trees (ASTs) for lambda calculus. LCExprs are constructed using three constructors:
LCVar, LCLam, and LCApp.

data LCExpr = LCVar String
| LCLam String LCExpr
| LCApp LCExpr LCExpr

For example, we would represent the lambda calculus expression \x -> \y -> x y with the
LCExpr

LCLam "x" (LCLam "y" (LCApp (LCVar "x") (LCVar "y")))

13. (4 points) Be the parser! Translate the following lambda calculus expression into its corresponding
LCExpr.

(\z -> z) (\q -> \r -> r (r q))

14. (6 points) The size of an LCExpr is the number of LCExpr constructors that it has. For instance:
LCVar "x" is size 1,
LCLam "x" (LCVar "x") is size 2, and
LCApp (LCLam "x" (LCVar "x")) (LCVar "y") is size 4.

Define a Haskell function size that takes an LCExpr and returns its size as an Int. You can use
the library functions in the Haskell reference at the end of the exam, but no other library functions.
The type signature of size is provided for you below; fill in the rest of the definition.

size :: LCExpr -> Int

Page 6



15. (6 points) Is your implementation of size in the previous question tail-recursive? If so, what makes
it tail-recursive? If not, what makes it not tail-recursive, and would it be possible to implement tail-
recursively? (Answer in 2-3 sentences)

16. (5 points) In lecture, we saw how we can implement custom instances of the Eq type class. Let’s
implement an instance of Eq for the LCExpr type. We will say that LCExprs are equal if they have
the same size, and not equal otherwise.1

Implement an Eq instance for LCExpr that will give us the behavior described above. The Eq in-
stance declaration and (==) type signature are provided below for you. You may use the size
function you wrote for the previous question as well as the library functions from the Haskell refer-
ence at the end of the exam but no other library functions. (Hint: Your answer should be one short
line of code.)

instance Eq LCExpr where
(==) :: LCExpr -> LCExpr -> Bool

1This might not be a very good notion of program equivalence, but let’s roll with it.

Page 7



For the next question, we’ll use the following Expr data type, which defines a grammar of abstract
syntax trees for a small arithmetic language.

data Expr = EPlus Expr Expr
| EMinus Expr Expr
| ENum Int
| EVar String

We want to write an interpreter for Exprs. Since Exprs may contain variables, our interpreter will
need to be an environment-passing interpreter. We will represent an environment as a list of pairs of
Strings and Values, using the following type alias:

type Env = [(String, Int)]

If an expression contains variables that are not bound in the environment, we won’t be able to in-
terpret it, so we’ll use a Maybe type as the return type of our interpreter. If we try to evaluate
an expression containing a variable that does not have a binding in the provided environment, our
interpreter should return Nothing.

Here are some example calls to eval:

ghci> eval (EPlus (ENum 3) (ENum 5)) []
Just 8
ghci> eval (EPlus (ENum 3) (EVar "x")) [("x", 5)]
Just 8
ghci> eval (EMinus (EVar "y") (EVar "x")) [("x", 5)]
Nothing
ghci> eval (EMinus (EVar "y") (EVar "x")) [("x", 5), ("y", 6)]
Just 1

Note: Although the above examples are simple, in general our interpreter should be able to handle
arbitrarily deeply nested Exprs.

Page 8



17. (12 points) The type signature of our interpreter is provided below. Fill in the definition of eval.
You can use library functions from the Haskell reference at the end of the exam, and you can also
use the two helper functions at the bottom of the page. (Hint: If you use the helper functions, you
can do this in four pretty short lines of code.)

eval :: Expr -> Env -> Maybe Int

evalNumOp :: (Int -> Int -> Int) -> Maybe Int -> Maybe Int -> Maybe Int
evalNumOp f (Just n) (Just m) = Just (f n m)
evalNumOp f _ _ = Nothing

lookupInEnv :: String -> Env -> Maybe Int
lookupInEnv _ [] = Nothing
lookupInEnv s ((k,v):kvs) = if s == k then Just v else lookupInEnv s kvs

Page 9



Lambda Calculus Reference
-- Church numerals
let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))

-- Booleans
let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let AND = \b1 b2 -> ITE b1 b2 FALSE

-- Pairs
let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Lists
let NIL = \x -> TRUE
let CONS = PAIR
let HEAD = FST
let TAIL = SND
let ISNIL = \lst -> lst (\h t -> FALSE)

-- Arithmetic
let SUC = \n f x -> f (n f x)
let ADD = \n m -> n SUC m

-- The definitions of DECR, SUB, ISZ, and EQL are elided
-- but you can still use them:
let DECR = \n -> -- (decrement n by one)
let SUB = \n m -> -- (subtract m from n)
let ISZ = \n -> -- (return TRUE if n == 0 and FALSE otherwise)
let EQL = \n m -> -- (return TRUE if n == m and FALSE otherwise)

-- Note: Since ZERO is the smallest Church numeral,
-- calls to DECR and SUB bottom out at ZERO.
-- For example, DECR ZERO evaluates to ZERO,
-- and SUB TWO THREE evaluates to ZERO.

-- The Y combinator
let Y = \step -> (\x -> step (x x)) (\x -> step (x x))

Page 10



Haskell Reference
• map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

• foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

• foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs

• (+) :: Num a => a -> a -> a

Returns the sum of its two arguments, e.g.,

> 3 + 4
7

• (-) :: Num a => a -> a -> a

Returns the difference of its two arguments, e.g.,

> 5 - 4
1

• (++) :: [a] -> [a] -> [a]

Appends two lists, e.g.,

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
> "apple" ++ "orange"
"appleorange"

• (==) :: Eq a => a -> a -> Bool

Compares two arguments for equality, e.g.,

> False == True
False
> "apple" == "apple"
True

Page 11


