CSEI114A, Spring 2022: Midterm Exam

Instructor: Lindsey Kuper

May 3, 2022

Student name:

CruzID (the part before the “@”” in your UCSC email address):
This exam has 11 questions and 120 total points.

Instructions

e Please write directly on the exam.

¢ You have 95 minutes to complete this exam. You may leave when you are
finished.

e This exam is closed book. You may use one double-sided page of notes, but no
other materials.

e Avoid seeing anyone else’s work or allowing yours to be seen.

e Please, no talking. No notes, books, laptops, phones, or other electronic devices.
Do not communicate with anyone but an exam proctor.

e To ensure fairness (and the appearance thereof), proctors will not answer ques-
tions about the content of the exam. If you are unsure of how to interpret a
problem description, state your interpretation clearly and concisely. Reasonable
interpretations will be taken into account by graders.

Good luck!

(this page intentionally left blank)

Part 1: Lambda calculus

1. Consider the following lambda calculus expression, which we will name EXPR1:

(\x vy z >y (xvy z)) (\ab -> a b)

a. (5 points) Choose the best answer:
(a) EXPR1 is in normal form
(b) After 1 S-reduction step, EXPR1 will be in normal form
(c) After 2 S-reduction steps, EXPR1 will be in normal form
(d) After 3 or more S-reduction steps, EXPR1 will be in normal form
(e) EXPR1 does not have a normal form
b. (5 points) After a single S-reduction step on EXPR1, what would the result-

ing expression be? Write your answer in the box below. If no S-reduction
step is possible, write “no S-reduction possible”.

Solution:
\y z >y ((\ab ->ab)y z)

2. Consider the following lambda calculus expression, which we will name EXPR2:

(\a b > ab) (\f x -—>f (f x))

a. (5 points) Choose the best answer:
(a) EXPR2 is in normal form
(b) After 1 S-reduction step, EXPR2 will be in normal form
(c) After 2 S-reduction steps, EXPR2 will be in normal form
(d) After 3 or more (S-reduction steps, EXPR2 will be in normal form
(e) EXPR2 does not have a normal form
b. (5 points) After a single S-reduction step on EXPR2, what would the result-

ing expression be? Write your answer in the box below. If no S-reduction
step is possible, write “no S-reduction possible”.

Solution:
\b > (\f x > f (f x)) b

3. Consider the following lambda calculus expression, which we will name EXPR3:

\a b > (\fxy-—>fxy)ab (\xy > zy)

a. (5 points) Choose the best answer:
(a) No variables occur free in EXPR3
(b) a and b occur free in EXPR3
(c) a, b, and z occur free in EXPR3
(d) z occurs free in EXPR3
b. (7 points) Which of the following expressions can be obtained from EXPR3
with one or more (3-reductions?
(@ \a b -—>ab (\xy —> zvV)
bab (\xy —> z v)
©\ab ->a (b \xy —-—> zvVy))
d\b > (\f xy —>fxvy)b (\xy > zv)

c. (3 points) Which of the following is a correct a-renaming of EXPR3?

@\gr > (\f xy >fxvy)ab (\xy > zv)
M \gr > (\f xy >fxvy) gr (\gh —-> z h)
©\ab > (\fxy —>fxvy)ab (\xy —> xvy)
(d\ab-> (\f gh->fgh) ab (\gh -> z v)

d. (10 points) Evaluate
EXPR3 (\x —> x) (\y —> vy)
to normal form with a series of S-reduction steps. Show your work in the

box below.

Solution:
Nab-> (\fxy-—>fxy) ab (\xy->2zy)) (\x->zx) (\y —>y)
=b> (\a b > (\x vy >axy)b (\xy —>2zvy)) (\x—>x) (\y > vy)
=b> (\a b > (\y >aby) (\xy —> 2z y)) (\x —> x) (\y —> vy)
=b> (\ab >ab (\xy —>zvy)) (\x > x) (\y —> vy)
=b> (\b > (\x -> x) b (\xy -> z y)) (\y —> y)

=b> (\x —> x) (\y > y) (\x y —> z y)
=b> (\y —> vy) (\x y => z y)
=b> \x y —> z y

Page 2

4. (10 points) Consider the following lambda calculus combinators (a combinator
is just a lambda calculus term with no free variables):

let TRUE = \x y —> X

let FALSE = \x y -> vy

let NOT = \bxvy ->Dbyx

let AND = \bl b2 -> bl b2 FALSE
let OR = \bl b2 -> bl TRUE b2

Use the above combinators to define a new combinator SAME with the following
behavior:

e SAME bl b2 should evaluate to TRUE if both b1 and b2 evaluate to TRUE.

e Likewise, SAME bl b2 should evaluate to TRUE if both bl and b2 evalu-
ate to FALSE.

e SAME bl b2 should evaluate to FALSE if one of b1l and b2 evaluates to
TRUE and the other evaluates to FALSE.

You may use any of the above predefined combinators in your definition of
SAME. You may assume that the arguments to SAME are expressions whose value
is either TRUE or FALSE. Write your answer in the box below.

let SAME =

Solution:

\bl b2 -> OR (AND bl b2) (AND (NOT bl) (NOT b2))

Page 3

Part 2: Haskell

. (5 points) What is the type of the following Haskell expression?

map (\s -> "hello " ++ s) ["apple", "orange"]

(a) String —> String
(b) [String] —-> String
(c) String

(d) [String]

(e) Type error

. (5 points) Suppose subtractThree is defined as follows:

subtractThree :: Int —-> Int
subtractThree x = x — 3

What is the type of the following Haskell expression?

subtractThree (foldr (+) 0 [1,2,3])

(a) Int -> Int
(b) [Int] —-> Int
(c) Int

(d) [Int]

(e) Type error

. (5 points) What does the following Haskell expression evaluate to?

let £ = \x > x + 1

g = filter (\y —> y > 1)
in g (map £ [0,1,2,3])

(@ [2,3]

(d) [2,3,4]

(c) [3,4]

(d) Type error

Page 4

8. (5 points) What is the type of the following Haskell expression?

let b = 3 < 5 in
case b of
True —-> (\s —> "hello, " ++ s)
False -> (\s —-> "goodbye, " ++ s)

(a) String —> String

(b) Bool —-> String

(c) String -> Bool -> String
(d) Bool -> String —-> String
(e) Type error

9. For this question, you will define a Haskell function 1istify that takes as
arguments an Int and some element, and returns a list of the specified num-
ber of repetitions of that element. For example, 1istify 3 5 evaluates to
[5,5,5]and 1istify 2 "hi" evaluatesto ["hi","hi"].

a. (5 points) What is the type signature of 1istify? Write your answer in
the box below.

Solution:
listify :: Int -> a —> [a]

b. (10 points) Complete the below definition of 1istify. The base case is
already filled in for you. Write the remaining part of the definition in the
box below. Don’t change the existing code, and don’t use library functions
other than the list constructors and simple arithmetic on Ints.
listify n x

| n <=0 = []
<YOUR CODE HERE>

Solution:
| otherwise = x:1listify (n-1) x

Page 5

10.

For the next two questions, consider the following data type:
data AExp = Num Int | Plus AExp AExp | Minus AExp AExp

(20 points) An AExp can represent an arithmetic expression. For example:

e 3 is represented by Num 3
e 3+ 4isrepresented by Plus (Num 3) (Num 4)
e 7— (34 12) is represented by

Minus (Num 7) (Plus (Num 3) (Num 12))

In the box below, define a Haskell function evalAExp that takes an AExp and
returns the Int value of the arithmetic expression it represents. Here are some
sample calls to evalAExp:

evalAExp (Num 3)

>
3
> evalAExp (Plus (Num 3) (Num 4))
y
>

evalAExp (Minus (Num 7) (Plus (Num 3) (Num 12)))
-8

The type signature of evalAExp is provided below for you. Do not use library
functions other than simple arithmetic on Ints.

evalAExp :: AExp —-> Int

Solution:

evalAExp e = case e of
Num i -> i

Plus el e2 -> evalAExp el + evalAExp e2
Minus el e2 —> evalAExp el - evalAExp e2

Page 6

11. (10 points) Instead of evaluating an AExp, we might want to simply look at a
more readable representation of it. For this question, you will define a Haskell
function showAExp that takes an AExp and returns a nicely formatted St ring
of the expression it represents. Here are some sample calls to showAExp:

> showAExp (Num 3)

"3"

> showAExp (Plus (Num 3) (Num 4))

"(3 + 4)"

> showAExp (Minus (Num 7) (Plus (Num 3) (Num 12)))
"(7 - (3 + 12))"

Complete the below definition of showAExp. The type signature and base case
are already filled in for you. Write the remaining part of the definition in the box
below. Don’t change the existing code, and don’t use library functions other than
the append (++) function.

The base case of showAExp uses the Haskell library function show to convert
an Int to a String. (For example, show 3 evaluates to "3".) Do not use
show elsewhere in the definition of showAExp.

showAExp :: AExp —> String
showAExp e = case e of

Num 1 —> show 1

<YOUR CODE HERE>

Solution:
Plus el e2 —> " (" ++ showAExp el ++ " + " ++ showAExp €2 ++ ")"
Minus el e2 —-> " (" ++ showAExp el ++ " - " +4+ showAExp e2 ++ ")"

Page 7

