
CSE 114A, Fall 2021 Midterm

Section Points Score
Part I 58 points
Part II 80 points
Total 138 points

Instructions

• You have 95 minutes to complete this exam.

• This exam is closed book. You may use one double-sided page of notes, but no other
materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions
about the content of the exam. If you are unsure of how to interpret a problem
description, state your interpretation clearly and concisely. Reasonable interpretations
will be taken into account by graders.

NAME: ____________________________________________________

CruzID: _______________________________ @ucsc.edu

1



Part I: Lambda calculus
1. Consider the following lambda calculus expression:

(\x y z -> x z y) (\a b c -> a b c) (\x y -> y) (\y z -> y) apple

(A) (5 pts) Recall that the redex of a lambda expression is the is a lambda term of the
form (\x -> e1) e2. Identify a redex in the above expression and write it below.
If there are multiple, you may choose any valid redex. If there are no redexes, write
“none.”

(B) (8 pts) Does the above expression have a normal form? If so, what is it?
(a) apple

(b) \c -> c

(c) TRUE

(d) \x y -> y

(e) Does not have a normal form

2



2. Now consider the following lambda calculus expression:

(\x y z -> y x z) (\x -> x x a) (\y z -> z y) (\y -> y y b)

(A) (5 pts) Which variables are bound in the above expression?
(a) All occurrences of a and b

(b) All occurrences of x, y and z

(c) All occurrences of a, b, x, y and z

(d) The first occurrences of x, y and z

(e) All but the first occurrences of x, y and z

(B) (10 pts) Which of the following expressions can be obtained from the above ex-
pression with one or more beta reductions?
(a) (\a -> a (\x -> x x a)) (\y -> y y b)

(b) (\x -> x x a) (\y -> y y b)

(c) (\x -> x x a) (\y -> y y b) a b a b a

(d) (\x -> x x a) (\x -> x x a) a a a a b

(e) (\y -> y y b) (\y -> y y b) b b b b a

3



3. (20 pts) Fill in a lambda calculus expression for each blank in the program below to
define a function POW where (POW x n) returns x raised to the nth power. For example
POW TWO THREE =~> EIGHT. You may use any of the functions defined on the Lambda
Calculus Cheat Sheet on the back page. Any other helper functions you must define
yourself. You must use recursion for full credit.

let POW1 = \f x n -> ITE _____(A)_______
_____(B)_______
_____(C)_______

let POW = ______(D)_______

(A)

(B)

(C)

(D)

4



4. For each bound occurrence of a variable in the following lambda terms, draw an arrow
pointing to its binder. For each free occurrence, draw a circle around the variable.

(A) (5 pts) (\x -> \y -> \z -> x (\y -> z (\z -> y z)) y)

(B) (5 pts) (\x y z -> (\a b c -> x y z)) (\x y z -> a b c)

5



Part II: Haskell

5. (5 pts) What is the type of the following Haskell expression?

map (\x y -> x + y) [1, 2, 3, 4, 5]

(a) Int

(b) [Int]

(c) Int -> [Int]

(d) [Int -> Int]

(e) Type error

6. (5 pts) What does the following Haskell expression evaluate to?

foldl (-) 0 [1, 2, 3]

(a) 0

(b) −2

(c) 2

(d) −6

(e) Type error

7. (5 pts) What does the following Haskell expression evaluate to?

foldr (flip (-)) 0 [1, 2, 3]

(a) 0

(b) −2

(c) 2

(d) −6

(e) Type error

6



For the next questions, consider the data type defined below.

data Expr = Abs String Expr
| App Expr Expr
| Var String

8. (15 pts) The function show converts an Expr value to a String in lambda expression syn-
tax. For example: show (App (Abs "x"(Var "x")) (Var "y")) returns “(\x -> x) y”.
Fill in the blanks to complete the implementation.

show :: Expr -> String

show ______(A)_______ = "(\" ++ x ++ " -> " ++ (show e) ++ ")"

show (App e1 e2) = __________(B)_________

show ________________(C)______________________

(A)

(B)

(C)

7



9. (10 pts) Create an Expr value that, when passed to show, returns:

(\stp -> (\x -> stp (x x)) (\x -> stp (x x)))

10. (30 pts) The subst function implements capture-avoiding substitution for Expr values.
For example, subst (Abs a (Var b)) b (Abs x (Var x)) returns (Abs a (Abs x (Var x)))
since (\a -> b)[b:=(\x -> x)] equals (\a -> (\x -> x)).
The helper function fv :: Expr -> [String] returns a list of strings containing the
name of each free variable in an Expr value.
The guard expression notElem x (fv e2) returns True if the string x is not in the list
of free variable names of e2 returned by (fv e2), otherwise it returns False.

subst :: Expr -> String -> Expr -> Expr
subst (Var x) y e = ____________(A)______________
subst (App e1 e2) y e3 = ____________(B)______________
subst (Abs x e1) y e2

| x == y = _________________(C)_______________
| notElem x (fv e2) = _________________(D)_______________

(A)

(B)

8



(C)

(D)

11. (10 pts) Are the equations for subst exhaustive? If they are, write “exhaustive”; if not,
write a call to subst with arguments that are not matched by any of subst’s equations.

9



10


	Lambda calculus cheat sheet
	Haskell cheat sheet

