
CSE114A, Winter 2025: Final Exam

Instructor: Lindsey Kuper

March 17, 2025

Student name:

CruzID: @ucsc.edu

This exam has 19 questions and 100 total points.

Instructions

• Please write directly on the exam.

• For short answer questions, please write your answer in the provided boxes. You can use
space outside of the boxes as scratch space, but we won’t see or grade it.

• For multiple choice questions, please circle the correct choice.

• You have 180 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materi-
als.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not
communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about
the content of the exam. If you are unsure of how to interpret a problem description, state
your interpretation clearly and concisely. Reasonable interpretations will be taken into ac-
count by graders.

• We will give partial credit for partially correct answers when it makes sense to do so. A
partially correct answer is better than leaving an answer blank.

Good luck!

i

This page is for your use as scratch space. Anything you write here will be ungraded.

Part 1: Lambda Calculus
1. (3 points) A lambda calculus expression is in normal form if it cannot be further reduced.

Evaluate the following lambda calculus expression to normal form using a series of β-reduction
steps (and only β-reduction steps – you shouldn’t need anything else). Start each line with
=b>, as if you were using Elsa, and do just one β-reduction step per line.

(\x y -> y x y) (\q r -> q) (\f z -> f (f z))

2. (3 points) Which of the following is true?

⃝ There may be more than one sequence of reduction steps that reduces a given
lambda calculus expression to normal form, but for the particular expression from
question 1, there is exactly one.

⃝ There may be more than one sequence of reduction steps that reduces a given
lambda calculus expression to normal form, and for the particular expression
from question 1, there is more than one.

⃝ There is always exactly one sequence of reduction steps that reduces a given lambda
calculus expression to normal form.

⃝ There is always more than one sequence of reduction steps that reduces a given
lambda calculus expression to normal form.

For the next two questions, you may use any of the helper functions defined in the provided
lambda calculus reference at the end of the exam.

Recall from the midterm that we can encode lists in lambda calculus using pairs, as follows:

let NIL = \x -> TRUE
let CONS = PAIR
let HEAD = FST
let TAIL = SND
let ISNIL = \lst -> lst (\h t -> FALSE)

The list constructors are NIL and CONS. NIL is the empty list, and a non-empty list consists
of a pair of a list element and a list.

For instance, (CONS ONE (CONS TWO (CONS THREE NIL))) is analogous to the Haskell
list [1, 2, 3], which is just syntactic sugar for 1 : (2 : (3 : [])).

The ISNIL function takes a list and returns TRUE if the list is NIL and FALSE otherwise.

(Note: Unlike in Haskell, elements of these lists don’t all have to be of the same type! It’s fine
to have a list like CONS FALSE (CONS ONE NIL), for example.)

3. (2 points) Define a lambda calculus function PREPENDFALSE that takes a list and returns a
new list that has FALSE as its first element, followed by all the elements of the original list.
The resulting list is therefore one element longer than the original list was.

You may assume that PREPENDFALSE is called with a list constructed with NIL or CONS.
Here are some example calls to PREPENDFALSE:

PREPENDFALSE NIL =*> CONS FALSE NIL
PREPENDFALSE (CONS TRUE NIL) =*> CONS FALSE (CONS TRUE NIL)
PREPENDFALSE (CONS ONE NIL) =*> CONS FALSE (CONS ONE NIL)

let PREPENDFALSE =

Page 2

4. Define a lambda calculus function SUMLIST that takes a list of Church numerals and returns
the sum of its elements as a Church numeral.

Here are some example calls to SUMLIST:

SUMLIST NIL =˜> ZERO
SUMLIST (CONS TWO NIL) =˜> TWO
SUMLIST (CONS TWO (CONS ONE NIL)) =˜> THREE
SUMLIST (CONS ZERO (CONS THREE (CONS ZERO NIL))) =˜> THREE

You may assume that SUMLIST is called with a list constructed with NIL or CONS, and that
all of the list’s elements are Church numerals. You must use recursion for full credit.

let SUMLIST1 = \rec -> \lst -> ITE _____(part 4(a))_______
_____(part 4(b))_______
_____(part 4(c))_______

let SUMLIST = ______(part 4(d))_______

a. (3 points) 4(a):

b. (3 points) 4(b):

c. (3 points) 4(c):

d. (3 points) 4(d):

Page 3

Part 2: Haskell

The Haskell reference at the end of the exam has information about library functions used in
this section.

5. (3 points) What is the type of the following Haskell expression?

\q r s -> [q, r]

⃝ Type error

⃝ a -> a -> a -> [b]

⃝ a -> a -> b -> [b]

⃝ a -> a -> a -> [a]

⃝ a -> a -> b -> [a]

6. (3 points) What is the type of the following Haskell expression?

\q r s -> [q, r, r == s]

⃝ Type error

⃝ Bool -> Bool -> Bool -> [Bool]

⃝ Eq a => Bool -> a -> a -> [Bool]

⃝ Eq a => a -> a -> a -> [a]

⃝ (Eq a, b) => a -> b -> b -> [a]

7. (3 points) What is the type of the following Haskell expression?

\x y -> (x, y, "batman", "catman", "wingman")

⃝ Type error

⃝ a -> a -> (a, a, String, String, String)

⃝ a -> b -> (a, b, String, String, String)

⃝ a -> a -> [String]

⃝ a -> b -> [String]

8. (3 points) What is the type of the following Haskell expression?

\y z -> map (\x -> "kona" ++ x) [y, z]

⃝ Type error

⃝ [String] -> [String] -> String

⃝ [String] -> [String] -> [String]

⃝ String -> String -> [String]

⃝ [String] -> [String] -> [String]

Page 4

9. For this problem, you can use any library functions from the Haskell reference at the end of
the exam, but no other library functions.

Consider a Haskell function andList :: [Bool] -> Bool that takes a list of expres-
sions of Bool type and returns True if all elements of the list evaluate to True, and False
otherwise. Here are some example calls to andList:

ghci> andList []
True
ghci> andList [True, False, True, True]
False
ghci> andList [True, 3 == 3, True && True]
True

a. (3 points) Define andList in the box below. The type signature is provided for you.
Your definition should use pattern matching, and should not be tail-recursive.
andList :: [Bool] -> Bool

b. (3 points) Now define andList’, which has the same type signature and behavior as
andList, but is written using foldr. (Hint: You can do this in one line of code.)
andList’ :: [Bool] -> Bool

c. (4 points) Finally, define andListTR, which has the same type signature and behavior
as andList, but is tail-recursive.
andListTR :: [Bool] -> Bool

Page 5

Part 3: Working with Abstract Syntax Trees

In this section and the next section, we’ll use the following Expr data type, which defines a
grammar of abstract syntax trees (ASTs) for SmolHaskell, a language with variables, integer
literals, let-expressions, addition, function definitions, and function calls:

data Expr = Var String -- Variable
| Num Int -- Integer literal
| Let String Expr Expr -- let-expression: ‘let x = e1 in e2‘
| Add Expr Expr -- Addition: ‘e1 + e2‘
| Lam String Expr -- Function definition
| App Expr Expr -- Function call

For example, the program let f = \z -> z + 5 in f 3 has the following AST:

Let "f" (Lam "z" (Add (Var "z") (Num 5))) (App (Var "f") (Num 3))

10. (2 points) Be the parser: translate the following SmolHaskell program into its corresponding
Expr.

(let x = 4 in x + 5) + ((\x -> x) 7)

Page 6

11. (5 points) Let us define the depth of a SmolHaskell expression as follows:

• The depth of a variable or an integer literal is 1.

• The depth of a lambda abstraction \x -> e is 1 + the depth of e.

• The depth of a let-expression let x = e1 in e2, an addition expression e1 + e2,
or an application e1 e2 is 1 + the maximum of the depth of e1 and the depth of e2.

Define a Haskell function depth that takes an Expr and returns its depth as an Int. You
can use the library functions in the Haskell reference at the end of the exam, but no other
library functions. The type signature of depth is provided for you below; fill in the rest of
the definition. Here are some sample calls to depth:

> depth (Var "x")
1
> depth (Add (Var "x") (Num 4))
2
> depth (Add (Add (Var "x") (Num 1)) (Num 2))
3
> depth (Lam "x" (Add (Add (Var "x") (Num 1)) (Num 2)))
4
> depth (App (Lam "x" (Var "x")) (Lam "x" (Var "x")))
3
> depth (Let "x" (Num 5) (Add (Var "x") (Num 3)))
3

depth :: Expr -> Int

Page 7

12. (10 points) An occurrence of a variable in a SmolHaskell expression is free if it is not bound
by an enclosing lambda abstraction or let binding.

For example, in the expression let x = 5 in x + 3, there are no free occurrences of
variables; in the expression let x = 5 in x + y, there is a free occurrence of y; and in
(\x -> y) x, both y and x occur free.

Define a Haskell function freeVars that takes an Expr and returns a list of variables that
occur free in it (in any order). You can use the library functions in the Haskell reference at the
end of the exam, but no other library functions. The type signature of freeVars is provided
for you below; fill in the rest of the definition.

Here are some sample calls to freeVars:

-- x + y
> freeVars (Add (Var "x") (Var "y"))
["x","y"]
-- \y -> x + x
> freeVars (Lam "y" (Add (Var "x") (Var "x")))
["x"]
-- (let x = 5 in x) + (let y = 5 in x)
> freeVars (Add (Let "x" (Num 5) (Var "x")) (Let "y" (Num 5) (Var "x")))
["x"]

For full credit, a variable that occurs free more than once in an expression should only appear
once in the list returned by freeVars. Hint: Use the nub and (\\) list operations.

freeVars :: Expr -> [String]

Page 8

Part 4: Interpreters and Environments

13. (20 points) Next, we’ll be writing an environment-passing interpreter for Exprs, so let’s set
up some machinery for doing that. Ideally, an Expr will evaluate to a Value, as defined by
the following data type:

data Value = ValNum Int | ValClos String Expr ListEnv

where ListEnv is a simple list representation of an environment, which maps program vari-
ables (represented as Strings) to their Values:

type ListEnv = [(String, Value)]

Here is the function that we’ll use for looking up the values of program variables in an envi-
ronment:

lookupInEnv :: ListEnv -> String -> Maybe Value
lookupInEnv [] k = Nothing
lookupInEnv ((k’,v):env’) k =

if k == k’ then Just v else lookupInEnv env’ k

The type signature of our interpreter will be:

eval :: ListEnv -> Expr -> Maybe Value

The Maybe type is there because things can go wrong during the evaluation of an Expr.
In particular, it could contain an unbound variable, like Add (Var "x") (Num 5), or it
could be ill-typed, like App (Num 3) (Num 5) or Add (Lam "x" (Var "x")) (Num 5).
If either of those things happen, we want our interpreter to return Nothing. If nothing goes
wrong, our interpreter should return a Value wrapped in the Just constructor.

Page 9

We are now ready to implement eval. The type signature and the cases for Var and Add
expressions are provided for you; your job is to implement the Num, Lam, App, and Let cases.

Hints:

• Functions should evaluate to closure values.

• In a let-expression let x = e1 in e2, you will want to evaluate e1, then evalu-
ate e2 in an extended environment. Your interpreter does not need to support recursive
functions.

• In an application expression e1 e2, you will want to evaluate e1 to a closure, and then
evaluate the closure body in an extended environment.

• Because we’re using a list representation of environments, you can use (:) to add things
to an environment.

• You can use case expressions to pattern match on the result of recursive calls. Look at
how the Add case is written for an example.

eval :: ListEnv -> Expr -> Maybe Value
eval env (Var x) = lookupInEnv env x
eval env (Add e1 e2) = case (eval env e1, eval env e2) of

(Just (ValNum v1), Just (ValNum v2)) -> Just (ValNum (v1 + v2))
_ -> Nothing

Page 10

Part 5: Unification and Type Inference

In the context of unification and type inference, we’ve discussed the concept of substitutions.
A substitution is a mapping from type variables to types, where the types may themselves
contain type variables (or be type variables). For example,

[(a, Bool), (b, Int -> c), (d, e)]

is a substitution that maps the type variable a to the type Bool, the type variable b to the type
Int -> c, and the type variable d to the type e.

14. (2 points) If possible, write down a substitution that is a unifier
for the types Int -> a and a -> b. If these types do not unify, write “Cannot unify”.

15. (2 points) If possible, write down a substitution that is a unifier
for the types Int -> a and a. If these types do not unify, write “Cannot unify”.

16. (2 points) If possible, write down a substitution that is a unifier
for the types a -> b and c -> Int -> d. If these types do not unify, write “Cannot
unify”.

17. (2 points) If possible, write down a substitution that is a unifier
for the types Bool and a -> b. If these types do not unify, write “Cannot unify”.

Page 11

18. (2 points) If possible, write down a substitution that is a unifier
for the types a -> b and a -> c. If these types do not unify, write “Cannot unify”.

19. In section 4 of this exam, we wrote an interpreter for SmolHaskell. Here’s what should happen
if you tried to evaluate the expression (\x -> x) + 3:

> eval [] (Add (Lam "x" (Var "x")) (Num 3))
Nothing

To catch these kinds of errors prior to run time, we can define a type system for SmolHaskell
and then implement a type checker. Below are the typing rules we’ll use, all of which are
standard:

(x,T1):G |- e :: T2 (x,T) in G
[T-Lam] -------------------------- [T-Var] -----------

G |- (\x -> e) :: T1 -> T2 G |- x :: T

G |- e1 :: Int G |- e2 :: Int
[T-Add] -----------------------------------

G |- e1 + e2 :: Int

G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] ---------------------------------------

G |- (e1 e2) :: T2

G |- e1 :: T1 (x,T1):G |- e2 :: T2
[T-Let] ------------------------------------- [T-Int] -------------

G |- let x = e1 in e2 :: T2 G |- n :: Int

Page 12

Let’s use our typing rules to make sure that an expression in SmolHaskell is well-typed. The
expression we’ll consider is let f = \x -> x + 1 in f 2.

For each blank below, fill in a type or the name of a typing rule to complete the typing deriva-
tion.

We are using the following abbreviations for type environments:

G1 = [(x,Int)]
G2 = [(f,Int -> Int)]

(x,Int) in G1
[19a]------------- [19b]-----------

G1 |- x::Int G1 |- 1::Int (f,Int->Int) in G2
[19c]------------------------------- [19d]------------------ [19e]--------------

G1 |- x+1 :: [19f] G2 |- f :: Int->Int G2 |- 2 :: Int
[19g]------------------------ [19h]---------------------------------------

[] |- \x -> x+1 :: [19i] G2 |- f 2 :: [19j]
[19k]---

[] |- let f = \x -> x + 1 in f 2 :: Int

a. (1 point) 19(a):

b. (1 point) 19(b):

c. (1 point) 19(c):

d. (1 point) 19(d):

e. (1 point) 19(e):

Page 13

f. (1 point) 19(f):

g. (1 point) 19(g):

h. (1 point) 19(h):

i. (1 point) 19(i):

j. (1 point) 19(j):

k. (1 point) 19(k):

Page 14

Lambda Calculus Reference
-- Church numerals
let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))

-- Booleans
let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let AND = \b1 b2 -> ITE b1 b2 FALSE

-- Pairs
let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Lists
let NIL = \x -> TRUE
let CONS = PAIR
let HEAD = FST
let TAIL = SND
let ISNIL = \lst -> lst (\h t -> FALSE)

-- Arithmetic
let SUC = \n f x -> f (n f x)
let ADD = \n m -> n SUC m

-- The definitions of DECR, SUB, ISZ, and EQL are elided
-- but you can still use them:
let DECR = \n -> -- (decrement n by one)
let SUB = \n m -> -- (subtract m from n)
let ISZ = \n -> -- (return TRUE if n == 0 and FALSE otherwise)
let EQL = \n m -> -- (return TRUE if n == m and FALSE otherwise)

-- Note: Since ZERO is the smallest Church numeral,
-- calls to DECR and SUB bottom out at ZERO.
-- For example, DECR ZERO evaluates to ZERO,
-- and SUB TWO THREE evaluates to ZERO.

-- The Y combinator
let Y = \step -> (\x -> step (x x)) (\x -> step (x x))

Page 15

Haskell Reference
• map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

• foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

• (+) :: Num a => a -> a -> a

Returns the sum of its two arguments, e.g.,

> 3 + 4
7

• max :: Ord a => a -> a -> a

Returns the maximum of its two arguments, e.g.,

> max 3 4
4

• (&&) :: Bool -> Bool -> Bool

The logical ‘and’ operation.

> True && False
False
> True && True
True

• (++) :: [a] -> [a] -> [a]

Append two lists, e.g.,

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
> "apple" ++ "orange"
"appleorange"

• nub :: [a] -> [a]

Remove duplicate elements from a list, e.g.,

> nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]

Page 16

• (\\) :: [a] -> [a] -> [a]

Compute the difference of two lists. In the result of xs \\ ys, the first occurrence of each
element of ys in turn (if any) has been removed from xs. Thus ((xs ++ ys) \\ xs) == ys,
e.g.,

> ["a","b","c"] \\ ["a"]
["b","c"]
> ["a","b","c","a"] \\ ["a","c"]
["b","a"]

• (==) :: Eq a => a -> a -> Bool

Compare arguments for equality, e.g.,

> False == True
False
> "apple" == "apple"
True

Page 17

