
CSE 114A Midterm 2, Winter 2024

NAME : ____________________________________

CruzID: ___________________________@ucsc.edu

• DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO

• You have 90 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• You may refer to a double-sided cheat sheet, but no electronic materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• If you are unsure of how to interpret a problem description, state your
interpretation clearly and concisely. Reasonable interpretations will be
taken into acount by the graders.

• Good luck!

1



Q1: Scope
What are the free variables of this λ-term?

(\b -> a (\a -> c) (\d e -> a d)) (\h i -> g)

Answer: ____________________________

Q2: Reductions
Evaluate this λ-term to a normal form. Reminder:

• =a> stands for an α-step (α-renaming)
• =b> stands for a β-step (β-reduction)

(\z x -> x z) (x y)

=a> _________________________________________________

=b> _________________________________________________

2



Q3: Haskell filter
What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of filter.)

filter (\(x,y) -> x < y) [(0,5), (4,3), (4,5)]

Answer: _________________________________________

Q4: Haskell map
What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of map.)

map (\(x,y) -> x + y) [(0,1), (2,3), (4,5)]

Answer: _________________________________________

3



Q5: Haskell fold 1
What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of foldr.)

foldr (:) [(0,0)] [(0,1), (2,3), (4,5)]

Answer: _________________________________________

Q6: Haskell fold 2
What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of foldr.)

foldl (-) 10 [1,2,3]

Answer: _________________________________________

Q7: Haskell fold 3
What does this Haskell expression evaluate to? (See Haskell cheat sheet for the
definition of foldr.)

foldr (-) 10 [1,2,3]

Answer: _________________________________________

4



Q8: Haskell data types
Consider the datatype below for a tree.

data Tree = Leaf
| Node Int Tree Tree

Complete the following function definition so that it returns the maximum
integer in a tree, or returns 0 for the empty tree. (The function max returns the
maximum of its two integer arguments.)

maxIntTree :: Tree -> Int

maxIntTree Leaf =

maxIntTree (Node n l r) =

5



Q9: Haskell data types (continued)
Complete the following function definition so that it converts a Tree into a
String matching the following examples. Pay attention to including the right
parentheses and spacing. Remember that (++) concatenates Strings, and (show
n) converts an Int n into a String. It is ok if your code splits up over multiple
lines.

-- Examples:
-- treeToList Leaf returns "Leaf"
-- treeToList (Node 4 Leaf Leaf) returns "(Node 4 Leaf Leaf)"
-- treeToList (Node 3 (Node 4 Leaf Leaf) (Node 5 Leaf Leaf))
-- returns "(Node 3 (Node 4 Leaf Leaf) (Node 5 Leaf Leaf))"

treeToList :: Tree -> String

treeToList Leaf =

treeToList (Node n l r) =

6



Q10: Haskell data types (continued)
Consider the function:

m :: (Int -> Int) -> Tree -> Tree
m f Leaf = Leaf
m f (Node n l r) = Node (f n) (m f l) (m f r)

What does the following expression evaluate to?

m (\x -> x*2+1) (Node 2 Leaf (Node 3 Leaf (Node 4 Leaf Leaf)))

Answer: _________________________________________

Q11: Interpreters
Consider the following (strange!) interpreter for a small language:

data Exp = Num Int
| Add Exp Exp
| Mul Exp Exp

eval :: Exp -> Int
eval (Num n) = n
eval (Add e1 e2) = (eval e1) * (eval e2)
eval (Mul e1 e2) = (eval e1) - (eval e2)

What does the following expression evaluate to?

eval (Add (Mul (Num 10) (Num 5)) (Num 10))

Answer: _________________________________________

7



Haskell Cheat Sheet
Here is a list of definitions you may find useful:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs

where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = x : filter pred xs
| otherwise = filter pred xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

even :: (Integral a) => a -> Bool
(==) :: Eq a => a -> a -> Bool
max :: Ord a => a -> a -> a
(<) :: Ord a => a -> a -> Bool
(>) :: Ord a => a -> a -> Bool
(>=) :: Ord a => a -> a -> Bool
(<=) :: Ord a => a -> a -> Bool

8


	Q1: Scope
	Q2: Reductions
	Q3: Haskell filter
	Q4: Haskell map
	Q5: Haskell fold 1
	Q6: Haskell fold 2
	Q7: Haskell fold 3
	Q8: Haskell data types
	Q9: Haskell data types (continued)
	Q10: Haskell data types (continued)
	Q11: Interpreters
	Haskell Cheat Sheet

