
CSE 114A Midterm 1, Winter 2024

NAME : ____________________________________

CruzID: ___________________________@ucsc.edu

• DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO

• You have 90 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• You may refer to a double-sided cheat sheet, but no electronic materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• If you are unsure of how to interpret a problem description, state your
interpretation clearly and concisely. Reasonable interpretations will be
taken into acount by the graders.

• Good luck!

1

Q1: Scope[10 pts]
For each bound occurrence of a variable in the following lambda terms, draw an
arrow pointing to its binder. For each free occurrence, draw a circle around the
variable.

(\x -> \y -> \z -> x (\y -> z (\z -> w z)) y)

(\x y z -> (\a b c -> x y c)) (\x y z -> a y c)

2

Q2: Reductions [10 pts]
For each λ-term below, check the box next to each valid reduction of that term.
It is possible that none, some, or all of the listed reductions are valid. Reminder:

• =a> stands for an α-step (α-renaming)
• =b> stands for a β-step (β-reduction)
• =~> stands for a sequence of zero or more steps, where each step is either

an α-step or a β-step, and the right-hand side is in normal form

2.1 [5 pts]

(\x -> x x) (\x -> x x)

(A) =b> \x y -> y x []

(B) =b> (\x -> x x) (\x -> x x) []

(C) =b> \x y -> (\x -> x (x y)) []

(D) =a> (\x -> x x) (\y -> y y) []

(E) =a> \x y -> (\z y -> y z) (x y) []

2.2 [5 pts]

(\x -> x) (\y -> apple y) (\z -> z)

(A) =b> (\x -> x) (apple (\z -> z)) []

(B) =b> (\y -> apple y) (\z -> z) []

(C) =a> (\z -> z) (\y -> apple y) (\z -> z) []

(D) =a> (\x -> x) (\y -> orange y) (\z -> z) []

(E) =~> apple (\z -> z) []

3

Q3: Factorial [10 pts]
In this task you will implement the factorial function in lambda calculus. Your
implementation of FACT should satisfy the following test cases:

eval fact0 : eval fact1 : eval fact2 : eval fact3 :
FACT ZERO FACT ONE FACT TWO FACT THREE
=~> ONE =~> ONE =~> TWO =~> SIX

You can use any function defined in the “Lambda Calculus Cheat Sheet” at the
end of this exam, including the fixpoint combinator FIX. You should define a
helper function STEP.

let STEP = __

__

let FACT = __

__

4

Q4: Haskell Values and Patterns [10 pts]
Q4.1 [5 pts]

In Haskell, what is the definition of a value?

Q4.2 [5 pts]

In Haskell, what is the definition of a pattern?

5

Q5: Haskell Types [10 pts]
Fill in the blanks to show the Haskell type of each of the following expressions.

Q5.example

True :: Bool

Q5.1

(True,"abc") :: _____________________________________

Q5.2

["def","abc"] :: _____________________________________

Q5.3

(True : False : []) :: _____________________________________

Q5.4

[] :: _____________________________________

Q5.5

(\x -> if x then "hello" else "goodbye") :: _________________________________

6

Lambda Calculus Cheat Sheet
Here is a list of definitions you may find useful for Q3

-- Booleans --------------------------------

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y

-- Pairs -----------------------------------

let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Numbers ---------------------------------

let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f (f x))))
let SIX = \f x -> f (f (f (f (f (f x)))))

-- Arithmetic ------------------------------

let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE
let SKIP1 = \f p -> PAIR TRUE (ITE (FST p) (f (SND p)) (SND p))
let DEC = \n -> SND (n (SKIP1 INC) (PAIR FALSE ZERO))

-- Recursion ------------------------------

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

7

	Q1: Scope[10 pts]
	Q2: Reductions [10 pts]
	2.1 [5 pts]
	2.2 [5 pts]

	Q3: Factorial [10 pts]
	Q4: Haskell Values and Patterns [10 pts]
	Q4.1 [5 pts]
	Q4.2 [5 pts]

	Q5: Haskell Types [10 pts]
	Q5.example
	Q5.1
	Q5.2
	Q5.3
	Q5.4
	Q5.5

	Lambda Calculus Cheat Sheet

