
CSE114A, Spring 2024: Midterm Exam

Instructor: Lindsey Kuper

May 9, 2024

Student name:

CruzID: @ucsc.edu

This exam has 11 questions and 100 total points.

Instructions

• Please write directly on the exam.

• For short answer questions, please write your answer in the provided boxes. You can use space
outside of the boxes as scratch space, but we won’t see or grade it.

• For multiple choice questions, please completely fill in the circle for the correct choice.

• You have 95 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communi-
cate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about the
content of the exam. If you are unsure of how to interpret a problem description, state your inter-
pretation clearly and concisely. Reasonable interpretations will be taken into account by graders.

• We will give partial credit for partially correct answers when it makes sense to do so. A
partially correct answer is better than leaving an answer blank.

Good luck!

i

This page is for your use as scratch space. Anything you write here will be ungraded.

Part 1: Lambda Calculus
1. (6 points) A lambda calculus expression is in normal form if it cannot be further reduced. Evaluate

the following lambda calculus expression to normal form using a series of β-reduction steps (and
only β-reduction steps – you shouldn’t need anything else). Start each line with =b>, as if you were
using Elsa, and do just one β-reduction step per line.

Note: There may be multiple correct ways to reduce the expression. A correct solution is any solution
that Elsa will accept as correct.

(\x y -> y x) (\q r -> q) (\f g h -> f (g h)) (\z -> z)

Solution: Here is one solution (there may be other correct solutions):

(\x y -> y x) (\q r -> q) (\f g h -> f (g h)) (\z -> z)
=b> (\y -> y (\q r -> q)) (\f g h -> f (g h)) (\z -> z)
=b> (\f g h -> f (g h)) (\q r -> q) (\z -> z)
=b> (\g h -> (\q r -> q) (g h)) (\z -> z)
=b> \h -> (\q r -> q) ((\z -> z) h)
=b> \h -> (\q r -> q) h
=b> \h -> (\r -> h)

2. (5 points) Here is the BOX function:

let BOX = \x -> (\ignored -> x)

BOX takes an argument x, and returns a box containing x. A box is similar to a pair, except that it
contains only one element.

Define a lambda calculus function UNBOX that takes a box as its argument and returns the contents
of the box. For example, in Elsa:

UNBOX (BOX ZERO) =˜> ZERO
UNBOX (BOX TRUE) =˜> TRUE
UNBOX (BOX TWO) =˜> TWO
UNBOX (BOX (UNBOX (BOX TWO))) =˜> TWO

Hint: Think about how the FST and SND functions access the contents of a pair. (FST and SND are
defined in the lambda calculus reference at the end of the exam.) Can you do something similar to
access the contents of a box?

let UNBOX =

Solution: Here is one correct answer that passes the identity function as an argument to the box
(but another argument, such as ZERO or TRUE or FALSE, would also be fine).

let UNBOX = \b -> b (\z -> z)

Page 2

3. Define a lambda calculus function NEST that takes a Church numeral n as an argument. If n is
ZERO, NEST returns ZERO. Otherwise, NEST n returns n nested boxes, with the innermost box
containing ZERO. For example, in Elsa:

NEST ZERO =˜> ZERO
NEST ONE =*> BOX ZERO
NEST TWO =*> BOX (BOX ZERO)
NEST THREE =*> BOX (BOX (BOX ZERO))

(Note: We are using =*> instead of =˜> in the example calls to NEST above because the expressions
can be further reduced. For example, BOX ZERO can be further reduced to \b -> ZERO, and BOX
(BOX ZERO) can be further reduced to \b -> \b -> ZERO.)

You may assume that NEST is only called with non-negative integers represented as Church numer-
als. You may use any of the helper functions defined on the provided lambda calculus reference at
the end of the exam. You must use recursion for full credit.

let NEST1 = \rec -> \n -> ITE _____(part 3(a))_______
_____(part 3(b))_______
_____(part 3(c))_______

let NEST = ______(part 3(d))_______

a. (5 points) 3(a):

Solution: This is where we check a condition to know whether we are in the base case or not.
(ISZ n) is a correct answer, but there are other correct answers.

b. (5 points) 3(b):

Solution: This is the base case. ZERO is a correct answer, but there are other correct answers.

c. (5 points) 3(c):

Solution: This is the recursive case. (BOX (rec (DECR n))) is a correct answer, but
there are other correct answers.

d. (5 points) 3(d):

Solution:
Y NEST1

Page 3

Part 2: Haskell

The Haskell reference at the end of the exam has information about library functions used in this
section.

4. (4 points) What is the type of the following Haskell expression?

\x y -> [x, "pineco", "celebi"]

⃝ Type error

⃝ [String]

⃝ a -> a -> [String]
√

String -> a -> [String]

⃝ String -> String -> [String]

5. (4 points) What is the type of the following Haskell expression?

(\x -> if x == 5 then "glaceon" else ("sylveon", "leafeon")) 700

√
Type error

⃝ String

⃝ (String, String)

⃝ Num a => a -> String

⃝ Num a => a -> (String, String)

6. (4 points) What is the type of the following Haskell expression?

(\s t u -> if s == "mew" then Just "litten" else u) "mew"

⃝ Type error

⃝ String -> a -> Maybe String
√

a -> Maybe String -> Maybe String

⃝ String -> a -> String

⃝ Maybe String -> a -> Maybe String

7. (4 points) What is the type of the following Haskell expression?

map (\x -> x == 5)

⃝ Type error

⃝ (Eq a, Num a) => a -> [Bool]
√

(Eq a, Num a) => [a] -> [Bool]

⃝ (Eq a, Num a) => (a -> Bool) -> [Bool]

⃝ (Eq a, Num a) => [Bool] -> [a]

Page 4

8. (5 points) What does the following Haskell expression evaluate to?

map (\x -> 5) [1, 2, 3, 4, 5]

Solution:

[5, 5, 5, 5, 5]

9. (5 points) What does the following Haskell expression evaluate to?

foldr (++) "gengar" ["eevee", "diglett"]

Solution:

"eeveediglettgengar"

Page 5

Part 3: Abstract Syntax Trees and Environments

For all the questions in this section, we will use the following Expr data type. It defines the grammar
of abstract syntax trees for SmolHaskell, a language that is a very (very) small subset of Haskell.
SmolHaskell has numbers, Booleans, variables, addition expressions, subtraction expressions, and
if-expressions, represented with the Expr constructors ENum, EBool, EVar, EPlus, EMinus,
and EIf, respectively.

data Expr = ENum Int | EBool Bool | EVar String | EPlus Expr Expr
| EMinus Expr Expr | EIf Expr Expr Expr

For example, we can represent the SmolHaskell program

if x then (if False then (3 + 4) else (5 + y)) else z

with the Expr

EIf (EVar "x")
(EIf (EBool False)

(EPlus (ENum 3) (ENum 4))
(EPlus (ENum 5) (EVar "y")))

(EVar "z")

The size of an Expr is the number of Expr constructors that it has. For instance:
ENum 5 is size 1,
EPlus (ENum 3) (ENum 4) is size 3, and
EIf (EBool False) (EPlus (ENum 5) (EVar "x")) (ENum 4) is size 6.

10. a. (12 points) Define a Haskell function size that takes an Expr and returns its size as an Int.
You can use (+), but no other library functions. The type signature of size is provided for
you below; fill in the rest of the definition.
size :: Expr -> Int

Solution:
size (ENum _) = 1
size (EBool _) = 1
size (EVar _) = 1
size (EPlus e1 e2) = 1 + size e1 + size e2
size (EMinus e1 e2) = 1 + size e1 + size e2
size (EIf e1 e2 e3) = 1 + size e1 + size e2 + size e3

Page 6

b. (9 points) Here is a function that computes the total size of all the Exprs in a list:
sizeAll :: [Expr] -> Int
sizeAll [] = 0
sizeAll (x:xs) = size x + sizeAll xs

Define a tail-recursive Haskell function sizeAllTR that has the same behavior as sizeAll.
You may define a helper function or use a where clause. You can use (+), but no other library
functions. (It’s OK to use size, of course.) The type signature of sizeAllTR is provided for
you below; fill in the rest of the definition.
sizeAllTR :: [Expr] -> Int

Solution:
sizeAllTR xs = helper xs 0

where helper :: [Expr] -> Int -> Int
helper [] acc = acc
helper (x:xs) acc = helper xs (acc + size x)

(or use a separate helper function)

c. (7 points) Define a Haskell function sizeAllFoldr using foldr that has the same behavior
as sizeAll. You can use foldr and (+), but no other library functions. (It’s OK to use
size, of course.) The type signature of sizeAllFoldr is provided for you below; fill in the
rest of the definition.
Hint: The first argument to foldr should be of type Expr -> Int -> Int.
sizeAllFoldr :: [Expr] -> Int

Solution:
sizeAllFoldr xs = foldr (\x y -> size x + y) 0 xs

Page 7

11. (15 points) Finally, let’s write an interpreter for Exprs!

Since SmolHaskell supports both numbers and Booleans, our interpreter should be able to return
values of either type. For example, the SmolHaskell program

if True then False else True

evaluates to False, but the SmolHaskell program

if True then 3 else (4 + 5)

evaluates to 3. So, we will define a type for values that will encompass both numbers and Booleans:

data Value = VNum Int | VBool Bool

And now we can write an interpreter that returns a Value.

We also need to deal with Exprs that contain variables, so our interpreter will need to be an
environment-passing interpreter, as seen on Assignment 3. We will represent an environment as
a list of pairs of Strings and Values, using the following type alias:

type Env = [(String, Value)]

So the type signature of our interpreter will be:

eval :: Expr -> Env -> Value

The environment associates variables with values. If we try to evaluate an expression containing
a variable that does not have a binding in the provided environment, our interpreter should raise a
run-time exception. The code that does this is in the provided helper functions, so if you use the
helper functions, you won’t need to implement the code that raises the exception yourself.
If we try to run a program that uses a number where it should use a Boolean, like if 3 then 5 else 7,
or a program that uses a Boolean where it should use a number, like 3 + False, our interpreter
should raise an run-time exception. Again, the code that does this is in the provided helper func-
tions, so if you use the helper functions, you won’t need to implement the code that raises the
exception yourself.
Here are some example calls to eval:

> eval (EBool True) []
VBool True
> eval (EIf (EBool True) (EBool False) (EBool True)) []
VBool False
> eval (EIf (EBool False) (ENum 3) (EVar "x")) [("x", VNum 5)]
VNum 5
> eval (EIf (EBool True) (EVar "y") (ENum 3)) [("x", VNum 5)]

*** Exception: Unbound variable!
> eval (EIf (ENum 3) (ENum 5) (ENum 7)) []

*** Exception: Type error
> eval (EPlus (ENum 3) (EBool False)) []

*** Exception: Type error

Page 8

We are now ready to define our interpreter. The type signature of eval and the first line of its
definition is given for you below; fill in the rest of the definition.

Hint: Use (+), (-), and the helper functions at the bottom of the page, and you can do this in five
lines of code.

eval :: Expr -> Env -> Value
eval (ENum n) env = VNum n

Solution:

eval (EBool b) env = VBool b
eval (EVar s) env = lookupInEnv s env
eval (EPlus e1 e2) env = evalNumOp (+) (eval e1 env) (eval e2 env)
eval (EMinus e1 e2) env = evalNumOp (-) (eval e1 env) (eval e2 env)
eval (EIf e1 e2 e3) env = evalIf (eval e1 env) (eval e2 env) (eval e3 env)

evalNumOp :: (Int -> Int -> Int) -> Value -> Value -> Value
evalNumOp f (VNum n) (VNum m) = VNum (f n m)
evalNumOp f _ _ = error "Type error"

evalIf :: Value -> Value -> Value -> Value
evalIf (VBool True) v1 v2 = v1
evalIf (VBool False) v1 v2 = v2
evalIf v _ _ = error "Type error"

lookupInEnv :: String -> Env -> Value
lookupInEnv _ [] = error "Unbound variable!"
lookupInEnv s ((k,v):kvs) = if s == k then v else lookupInEnv s kvs

Page 9

Lambda Calculus Reference
-- Church numerals
let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))

-- Booleans
let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y

-- Pairs
let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Boxes
let BOX = \x -> (\ignored -> x)

-- Arithmetic
let SUC = \n f x -> f (n f x)
let ADD = \n m -> n SUC m

-- The definitions of DECR, SUB, and ISZ are elided
-- but you can still use them:
let DECR = \n -> -- (decrement n by one)
let SUB = \n m -> -- (subtract m from n)
let ISZ = \n -> -- (return TRUE if n == 0 and FALSE otherwise)

-- Note: Since ZERO is the smallest Church numeral,
-- calls to DECR and SUB bottom out at ZERO.
-- For example, DECR ZERO evaluates to ZERO,
-- and SUB TWO THREE evaluates to ZERO.

-- The Y combinator
let Y = \step -> (\x -> step (x x)) (\x -> step (x x))

Page 10

Haskell Reference
• map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

• foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

• (+) :: Num a => a -> a -> a

Returns the sum of its two arguments, e.g.,

> 3 + 4
7

• (-) :: Num a => a -> a -> a

Returns the difference of its two arguments, e.g.,

> 5 - 4
1

• (++) :: [a] -> [a] -> [a]

Append two lists, e.g.,

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
> "apple" ++ "orange"
"appleorange"

• (==) :: Eq a => a -> a -> Bool

Compare arguments for equality, e.g.,

> False == True
False
> "apple" == "apple"
True

Page 11

