
CSE 114A Final, Winter 2024

NAME : ____________________________________

CruzID: ___________________________@ucsc.edu

• DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO

• You have 180 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• You may refer to a double-sided cheat sheet, but no electronic materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• If you are unsure of how to interpret a problem description, state your
interpretation clearly and concisely. Reasonable interpretations will be
taken into acount by the graders.

• The back side of each page will not be scanned or graded, but you can use
it as scratch paper if you like.

• Good luck!

1

Q1: Scope
What are the free variables of this λ-term?

(\a d -> b (\b -> c a)) d

� No free variables

� a, b, c, d

� b, c, d

� a, c, d

� a, b, d

� a, b, c

� b, c

Q2: Normal Forms
Which of the following terms are in normal form:

� x

� x y

� (\x -> x) y

� x (\y -> y)

� (\y -> y y) (\y -> y y)

2

Q3: Reductions
Evaluate this λ-term to a normal form, and for each reduction write in the
appropriate blank space whether it is an =a> step (α-renaming) or a =b> step
(β-reduction).

(\f x -> f (f x)) (\y -> x y) three

=__>__

=__>__

=__>__

=__>__

=__>__

=__>__

3

Q4: Haskell map and foldl
What does this Haskell expression evaluate to?

foldl (+) 3 (map (\(x,y) -> y+1) [(0,1), (2,3), (4,5)])

Answer: ___

Q5: Haskell map and foldr
What does this Haskell expression evaluate to?

foldr (+) 3 (map (\(x,y) -> x+1) [(0,1), (2,3), (4,5)])

Answer: ___

Q6: Haskell foldr
What does this Haskell expression evaluate to?

foldr (\(x,y) (a,b) -> (x+a,y+b)) (0,1) [(0,1), (2,3), (4,5)]

Answer: ___

4

Q7: Haskell foldl 1
In the context of the following function definition:

foo f = foldl (\b x -> (f x) : b) []

what does this Haskell expression evaluate to?

foo (\x -> x+1) [1,2,3]

Answer: ___

Q8: Haskell foldl 2
In the context of the same function definition above, what does this Haskell
expression evaluate to?

foo (\x -> x+1) (foo (\x -> x+1) [1,2,3])

Answer: ___

Q9: Haskell filter
What does this Haskell expression evaluate to?

filter (\(x,y) -> x y) [(even,1), (\x->x>2,3), (even,6)]

Answer: ___

5

Q10: Haskell data types
Consider the following datatype definition:

data Paragraph = Text String | Heading Int String | Bullets Bool [String]

What is the type of Heading?

Heading :: __

Q11: Haskell data types (continued)
In the context of the above datatype defintion, what is the type of

(\p ->
case p of

Text x -> x
| Heading x y -> y)

Answer: ___

6

Q12: Haskell data types (continued)
Consider the datatype below for a tree.

data Tree = Leaf
| Node Int Tree Tree

Write a function that sums all the integer in a trees.

Your solution should not be recursive, and instead should be defined in terms
of the foldTree function below, by passing in the correct three arguments to
foldTree.

foldTree :: (Int -> Int -> Int -> Int) -> Int -> Tree -> Int
foldTree op base Leaf = base
foldTree op base (Tree n l r) = op n (foldTree op base l) (foldTree op base r)

sumTree :: Tree -> Int

sumTree t = foldTree ___________________________ _______ _______

Q13: Haskell data types (continued)
The function foldTree above has a more general/polymorphic type. What is it?

Answer: foldTree :: ___

7

Q14: Haskell data types (continued)
Write an instance of the type class Show for the datatype Tree according to
the following examples. Pay attention to including the correct parentheses and
spacing. Remember that (++) concatenates Strings, and (show n) converts an
Int n into a String. It is ok if your code splits up over multiple lines.

-- Examples:
-- show Leaf returns "Leaf"
-- show (Node 4 Leaf Leaf) returns "(Node 4 Leaf Leaf)"
-- show (Node 3 (Node 4 Leaf Leaf) (Node 5 Leaf Leaf))
-- returns "(Node 3 (Node 4 Leaf Leaf) (Node 5 Leaf Leaf))"

instance

8

Q15: Implementing An Interpreter
Fill in the blanks in the following Haskell code to define an evaluator for this
small programming language:

data Expr = Num Int
| Add Expr Expr

eval :: Expr -> Int

eval (Num n) = __________________

eval (Add e1 e2) = ___________________________________

Q16: Free Variables
For the following small language, define a function free so that free x e
determines if the variable x occurs free in the expression e.

type Id = String
data Expr = Num Int

| Lam Id Expr
| Var Id
| App Expr Expr

free:: Id -> Expr -> Bool

9

Q17: Static and Dynamic Scope
Consider the following code fragment:

let euroToUSD = 1.1 in
let convertEurosToDollars eu = eu * euroToUSD in
let euroToUSD = 0.9 in
convertEurosToDollars 100

What would this code evaluate to under:

• Static (aka Lexical) Scope: _______________________

• Dynamic Scope: _______________________

10

Q18: Type Systems
What is the result of applying the substitition U = [a / Int, c / Int] to the
type (Int -> a -> b)

Answer: ___

Q19: Type Systems (continued)
What substitution is the most general unifier of the following two types:

• (Int -> b)
• (a -> Int -> Int)

Answer: ___

11

Haskell Cheat Sheet
Here is a list of definitions you may find useful:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs

where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = x : filter pred xs
| otherwise = filter pred xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

even :: (Integral a) => a -> Bool
(==) :: Eq a => a -> a -> Bool
max :: Ord a => a -> a -> a
(<) :: Ord a => a -> a -> Bool
(>) :: Ord a => a -> a -> Bool
(>=) :: Ord a => a -> a -> Bool
(<=) :: Ord a => a -> a -> Bool

12

	Q1: Scope
	Q2: Normal Forms
	Q3: Reductions
	Q4: Haskell map and foldl
	Q5: Haskell map and foldr
	Q6: Haskell foldr
	Q7: Haskell foldl 1
	Q8: Haskell foldl 2
	Q9: Haskell filter
	Q10: Haskell data types
	Q11: Haskell data types (continued)
	Q12: Haskell data types (continued)
	Q13: Haskell data types (continued)
	Q14: Haskell data types (continued)
	Q15: Implementing An Interpreter
	Q16: Free Variables
	Q17: Static and Dynamic Scope
	Q18: Type Systems
	Q19: Type Systems (continued)
	Haskell Cheat Sheet

