
CSE114A, Fall 2023: Final Exam

Instructor: Owen Arden

December 14, 2023

Student name:

CruzID (the part before the “@” in your UCSC email address):

This exam has 13 questions and 139 total points.

Instructions

• Please write directly on the exam.

• For multiple choice questions, fill in the letter completely, e.g. from a to a

• For short response questions, try to keep your answer within the outlined box.

• You have 180 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communicate with
anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about the content of
the exam. If you are unsure of how to interpret a problem description, state your interpretation clearly and
concisely. Reasonable interpretations will be taken into account by graders.

Good luck!
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Part 1: Lambda calculus

Question 1 (5 points)
Consider the following lambda expression EXPR1

(\x -> (\f -> f y ) (\z -> p z))

1.1 (2 points) The free variables of expression EXPR1 are :
a⃝ x and y
b⃝ y and p
c⃝ y and z
d⃝ f and z
e⃝ None of the above

1.2 (3 points) Choose the best answer for EXPR1:
a⃝ EXPR1 is in normal form
b⃝ After one β-reduction EXPR1 will be in normal form
c⃝ After two β-reductions EXPR1 will be in normal form
d⃝ After three β-reductions EXPR1 will be in normal form
e⃝ EXPR1 does not have a normal form

Question 2 (10 points)

2.1 (5 points) What does the following lambda expression evaluate to ?

INC ((\x y z -> x (z y)) INC (PAIR ONE TWO) FST)

a⃝ ONE

b⃝ TWO

c⃝ THREE

d⃝ FOUR

e⃝ FIVE

2.2 (5 points) What does the following lambda expression evaluate to ?

(\x y z -> ITE (FST (PAIR TRUE ONE)) (x z) (y z)) FST SND (PAIR ONE TWO)

a⃝ ONE

b⃝ TWO

c⃝ THREE

d⃝ FOUR

e⃝ FIVE



Part 2: Haskell

Question 3 (9 points)
Evaluate Haskell expressions.

3.1 (3 points) Consider the following Haskell expression

let sqrFun x = (sqr x) * (sqr x) in
sqrFun 2
where

sqr = \x -> x * x

What is the result of evaluating this expression?
a⃝ 4

b⃝ 8

c⃝ 16

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate

3.2 (3 points) Consider the following Haskell expression

let
rev :: [Int] -> [Int]
rev [] = []
rev (x:xs) = (rev xs) : x
in

rev [1,2,3,4,5]

What is the result of evaluating this expression?
a⃝ [1,2,3,4,5]

b⃝ [5,4,3,2,1]

c⃝ [1,2,3,4,5,5,4,3,2,1]

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate

3.3 (3 points) Consider the following Haskell function:

buildList x =
[ (i,j) | i <- [0..x],

j <- [0..x]]

What does buildList 2 evaluate to?
a⃝ [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)]

b⃝ [(0,0),(0,2),(2,0),(2,2)]

c⃝ [(0,0),(1,1),(2,2)]

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate
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Part 3: Recursive Data Types

Question 4 (18 points)
Consider the following ADT that is used to represent a List

data List = Nil | Cons Int List

4.1 (3 points) instantiate the following list given the above definition: [1, 4, 3, 2]

Solution:
list = Cons 1 (Cons 4 (Cons 3 (Cons 2 Nil)))

4.2 (5 points) implement a function listLength, which returns the length of a given list.

Solution:
listLength :: List -> Int
listLength Nil = 0
listLength (Cons x xs) = 1 + listLength xs

4.3 (5 points) Define a function sumList, which returns the sum of the elements in the list

Solution:
sumList :: List -> Int
sumList Nil = 0
sumList (Cons x xs) = x + sumList xs

4.4 (5 points) The function isListIncreasing below determines whether a list of integers are sorted in
increasing order.

isListIncreasing :: List -> Bool
isListIncreasing Nil = True
isListIncreasing (Cons x xs) = helper x xs
where

helper x Nil = True
helper x (Cons y ys) = if x > y then False else helper y ys

What should be the type signature of the helper function?
a⃝ helper :: [Int] -> Bool

b⃝ helper :: [List] -> Int -> Bool

c⃝ helper :: Int -> List -> Bool

d⃝ helper :: [List] -> [Int] -> Bool

e⃝ None of the above
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Part 4: Higher-order Functions

Question 5 (16 points)
Higher-order Functions.

5.1 (5 points) Consider the following Haskell expression:

foldr (-) 0 [1,2,3,4,5]

What is the result of evaluating this expression?
Hint: You may find the implementation of foldr in the cheat sheet; evaluate the expression by hand to
find the answer.

a⃝ -5

b⃝ 3

c⃝ -15

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate

5.2 (5 points) Consider the following Haskell expression:

foldl (-) 0 [1,2,3,4,5]

What is the result of evaluating this expression?
Hint: You may find the implementation of foldl in the cheat sheet; evaluate the expression by hand to
find the answer.

a⃝ -5

b⃝ 3

c⃝ -15

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate

5.3 (3 points) Consider the following Haskell expression:

map (\x -> (x: x * x)) [0,1,2,3,4,5]

What is the result of evaluating this expression?
a⃝ {0:0,1:1,2:2,3:3,4:4,5:5}
b⃝ {0:0,1:1,2:4,3:9,4:16,5:25}
c⃝ [0,1,4,9,16,25]

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate

5.4 (3 points) Consider the following Haskell function:

mapFilter ls = map (filter (\x -> (x ‘mod‘ 2) /= 0)) ls

What does mapFilter [[1,2,3,4,5]] evaluate to?
a⃝ [1,3,5]

b⃝ [[1,3,5]]

c⃝ [[1],[3],[5]]

d⃝ None of the above
e⃝ Syntax or type error
f⃝ Won’t terminate
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Part 5: Semantics, scope, environments

Question 6 (6 points)
Consider the following Nano program:

let a = 1 in
let b = 2 in

let f = \x y -> x + y + a + b + c in
let a = 3 in

let c = 4 in
f a b

6.1 (3 points) Under static scope, what would the above program evaluate to?
a⃝ 10

b⃝ 12

c⃝ 14

d⃝ error: unbound variable

6.2 (3 points) Under dynamic scope, what would the above program evaluate to?
a⃝ 10

b⃝ 12

c⃝ 14

d⃝ error: unbound variable

Question 7 (10 points)
Consider the following Nano program:

let a = 1 in
let b = 2 in

let f1 = \x y -> x + y + a in
let f2 = \x y -> x - y - b in

let a = f1 a b in
let b = f1 a b in

f2 a b

7.1 (5 points) Under static scope, what would the above program evaluate to?
a⃝ -5
b⃝ -10
c⃝ -16
d⃝ error: unbound variable

7.2 (5 points) Under dynamic scope, what would the above program evaluate to?
a⃝ -5
b⃝ -10
c⃝ -16
d⃝ error: unbound variable
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Question 8 (10 points)
Consider the following Nano language

e ::= x | v | e1 + e2 |
let x = e1 in e2 |
\x -> e | e1 e2

v ::= n | \x -> e
where n ∈ N, x ∈ Var

and the following operational semantics for the Nano language

e1 => e1’
[Add-L] -----------------------------

e1 + e2 => e1’ + e2

e2 => e2’
[Add-R] -----------------------------

n1 + e2 => n1 + e2’

[Add] n1 + n2 => n where n == n1 + n2

e1 => e1’
[Let-Def] -----------------------------------------

let x = e1 in e2 => let x = e1’ in e2

[Let] let x = v in e2 => e2[x := v]

e1 => e1’
[App-L] --------------------

e1 e2 => e1’ e2

e => e’
[App-R] ------------------

v e => v e’

[App] (\x -> e) v => e[x := v]

(the cases for value substitution are given in the appendices)

8.1 (5 points) Which of the following reductions are valid ?
a⃝ let x=9+1 in x+1 => let x=10 in x+1

b⃝ let x=10 in x+9 => 10+9

c⃝ let x=9 in (let y=5+6 in x+y) => let x=9 in (let y=11 in x+y)

d⃝ a and b
e⃝ All of the above
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8.2 (5 points) Which of the following reductions are valid ?
a⃝ (\x y -> let z=y+1 in x+z)(3+4)(5+6)
=> (\y -> let z=y+1 in 3+4+z)(5+6)

b⃝ (\x y -> let z=y+1 in x+z)(3+4)(5+6)
=> (\x y -> let z=y+1 in x+z)(7)(5+6)

c⃝ (\y -> let z=y+1 in 7+z) (5+6)
=> (let z=(5+6)+1 in 7+z)

d⃝ (\y -> let z=y+1 in y+z)(5+6)
=> (\y -> let z=y+1 in y+z)(11)

e⃝ b and d

Question 9 (10 points)
Consider the following grammar for Nano1
Grammar

e ::= x | v
| e1 + e2
| let x = e1 in e2
v ::= n
where n ∈ N, x ∈ Var

Let the sizes for the terms in our grammar be the:
Term Size
size n = 1
size x = 1
size (e1 + e2) = 1 + size e1 + size e2
size (let x = e1 in e2) = size e1 + size e2

9.1 (5 points) Consider the Lemma and its corresponding proof below
Lemma: For any e, size e > 0
Proof: By induction on the term e

• Base case 1: size n = 1 > 0
• Base case 2: size x = 1 > 0
• Inductive case 1: size (e1 + e2) = 1 + size e1 + size e2 > 0 because size e1 > 0 and size e2 > 0 by IH
■

What is the inductive hypothesis (IH)?

a⃝ size e1 > 0 and size e2 > 0

b⃝ size e = 1

c⃝ size e1 + size e2 > 0

d⃝ size n = 1 and size x = 1

e⃝ None of the above
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9.2 (5 points) The above proof is missing the let case. In the space below, complete the proof using the
same format as the other cases above.

Solution: Inductive case 2: size(let x = e1 in e2) = size e1 + size e2 > 0 because size e1 > 0 and size
e2 > 0 by IH
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Part 6: Type, type-inference, type-classes

Question 10 (15 points)
General Unifiers

10.1 (5 points) What is a unifier for the following types?
a -> b and c -> Int -> String

a⃝ [a / c, b / Int -> String]

b⃝ [a / c -> Int, b / String]

c⃝ [a / Bool, b / Int -> String, c / Bool]

d⃝ (a) and (b)

e⃝ (a) and (c)

f⃝ (b) and (c)

g⃝ Cannot unify

10.2 (5 points) What is a unifier for the following types?
a -> Int and b -> Int -> Int

a⃝ [a / Int, b / Int -> Int]

b⃝ [a / Int -> Int, b / Int]

c⃝ [a / Int, b / Int]

d⃝ [a / Int -> Int, b / Int -> Int]

e⃝ Cannot unify

10.3 (5 points) Consider the following types: a -> Int -> Int and b -> c.
Is the following unifier a most general unifier? [a / Int, b / Int, c / Int -> Int]

a⃝ Yes
b⃝ No, a most general unifier is [b / a, c / Int -> Int]

c⃝ No, a most general unifier is [a / Int, b / Int -> Int, c /Int]

d⃝ Cannot unify
e⃝ None of the above

Question 11 (6 points)
Let us extend our grammar for Nano1 to be
Grammar
e ::= x | v
| e1 + e2
| e1 * e2
| let x = e1 in e2
v ::= n
where n ∈ N, x ∈ Var

Types
Types are represented by the following grammar:

T := Int | T1 -> T2

Type system
Below is a partial type system for this language.

The above rules are missing a rule for typing multiply expressions. Fill in the missing parts of the T-Mul rule
below.
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[T-Num] ------------------- [T-Var] ---------------------------
G |- n :: Int G |- x :: T

G |- e1 :: Int G |- e2 :: Int
[T-Add] ------------------------------------

G |- e1 + e2 :: Int

G |- e1 :: T1 G,x:T1 |- e2 :: T2
[T-Let] ------------------------------------

G |- let x = e1 in e2 :: T2

G |- (a) G |- (b)
[T-Mul] --------------------------

(c)

11.1 (2 points) (a)

Solution: e1 :: Int

11.2 (2 points) (b)

Solution: e2 :: Int

11.3 (2 points) (c)

Solution: G |- e1 * e2 :: Int
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Question 12 (9 points)
Below is a partial typing derivation that shows that a Nano1 expression 5 + (let x = 9 in x+1)
has type Int. For each blank, fill in a type, the name of a typing rule, or the whole typing judgement (premise)
to complete the typing derivation.

[T-Var]---------- [(d)]-----------
x:Int |- x::Int x:Int |- 1:: Int

[T-Num]----------- [T-Add]---------------------
[] |- 9 :: Int (c)

[T-Num]----------------- [T-Let]---------------------------------------
[] |- 5 :: Int [] |- let x = 9 in x+1 :: (b)

[(a)]----------------------------------------------------------------------
[] |- 5 + (let x = 9 in x+1) :: Int

12.1 (2 points) (a)

Solution: T-Add

12.2 (2 points) (b)

Solution: Int

12.3 (3 points) (c)

Solution: x:Int |- x+1 :: Int

12.4 (2 points) (d)

Solution: T-Num

Question 13 (15 points)
Consider the three data types as follows

data Circle = Circle{r::Double}
data Rectangle = Rectangle{w::Double, l::Double}
data Triangle = Triangle{b::Double, h::Double}

and the following ShapeArea class

class ShapeArea a where
area :: a -> Double

13.1 (10 points) Create instances for the typeclass ShapeArea for each data type Circle, Rectangle
and Triangle. The area function returns area of the given shape. The area of a circle is calculated as
(3.14*radius*radius), the area of a rectangle is calculated as (width * height), and the area of
a triangle is calculated as (0.5 * base * height).
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Solution:

instance ShapeArea Circle where
area (Circle r) = 3.14 * r *r

instance ShapeArea Rectangle where
area (Rectangle w l) = w * l

instance ShapeArea Triangle where
area (Triangle b h) = 0.5 * b * h
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13.2 (5 points) Write a Haskell function named sumArea that takes a list of type a, where a is an instance of
ShapeArea, and returns sum of the areas.
E.g. sumArea [(Rectangle 2.0 3.0),(Rectangle 10.0 2.0)] returns 26.0,
sumArea [(Triangle 2.0 3.0),(Triangle 10.0 2.0)] returns 13.0.

Solution:

sumArea :: ShapeArea a => [a] -> Double
sumArea xs = sum (map area xs)
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1 Lambda calculus cheat sheet

-- Booleans --------------------------------
let TRUE =\x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Numbers ---------------------------------
let ZERO = \f x-> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f (f x))))

-- Pairs -----------------------------------
let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Arithmetic ------------------------------
let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE
let DECR = \n -> -- decrement n by one --
let EQL = \a b -> -- return TRUE if a == b, otherwise FALSE --

-- Recursion -------------------------------
let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))
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2 Haskell cheat sheet

data Maybe a = Nothing | Just a

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

-- returns the elements of a list in reverse order.
reverse :: [a] -> [a]

-- Extract the first element of a list, which must be non-empty.
head :: [a] -> a

-- Extract the elements after the head of a list, which must be non-empty.
tail :: [a] -> [a]

-- Extract the first n elements of a list.
take :: Int -> [a] -> [a]
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3 Value substitution cheat sheet

x[x := v] = v
y[x := v] = y -- assuming x /= y
n[x := v] = n
(e1 + e2)[x := v] = e1[x := v] + e2[x := v]
(let x = e1 in e2)[x := v] = let x = e1[x := v] in e2
(let y = e1 in e2)[x := v] = let y = e1[x := v] in e2[x := v]
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