
CSE114A, Spring 2023: Midterm Exam

Instructor: Lindsey Kuper

May 11, 2023

Student name:

CruzID (the part before the “@” in your UCSC email address):

This exam has 10 questions and 140 total points.

Instructions

• Please write directly on the exam.

• For short answer questions, please write your answer in the provided boxes. You can use
space outside of the boxes as scratch space, but we won’t see or grade it.

• For multiple choice questions, please completely fill in the circle for the correct choice.

• You have 95 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materi-
als.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not
communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about
the content of the exam. If you are unsure of how to interpret a problem description, state
your interpretation clearly and concisely. Reasonable interpretations will be taken into ac-
count by graders.

• We will give partial credit for partially correct answers when it makes sense to do so. A
partially correct answer is better than leaving an answer blank.

Good luck!
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This page is for your use as scratch space. Anything you write here will be ungraded.



Part 1: Lambda Calculus
1. (5 points) A lambda calculus expression is in normal form if it cannot be further reduced.

Evaluate the following lambda calculus expression to normal form using a series of β-reduction
steps (and only β-reduction steps – you shouldn’t need anything else). Start each line with
=b>, as if you were using Elsa, and do one β-reduction step per line.

Note: There may be multiple correct ways to reduce the expression. A correct solution is any
solution that Elsa will accept as correct.

(\f g h -> f g) (\x -> x) (\y -> (\z -> y)) (\q -> q)

Solution: There are at least two correct options:

(\f g h -> f g) (\x -> x) (\y -> (\z -> y)) (\q -> q)
=b> (\g h -> (\x -> x) g) (\y -> (\z -> y)) (\q -> q)
=b> (\h -> (\x -> x) (\y -> (\z -> y))) (\q -> q)
=b> (\x -> x) (\y -> (\z -> y))
=b> (\y -> (\z -> y))

(\f g h -> f g) (\x -> x) (\y -> (\z -> y)) (\q -> q)
=b> (\g h -> (\x -> x) g) (\y -> (\z -> y)) (\q -> q)
=b> (\h -> (\x -> x) (\y -> (\z -> y))) (\q -> q)
=b> (\h -> (\y -> (\z -> y))) (\q -> q)
=b> (\y -> (\z -> y))



-- Church numerals
let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f (f x))))

-- Booleans
let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y

-- Arithmetic
let SUC = \n f x -> f (n f x)
let ADD = \n m -> n SUC m

-- The definitions of DECR, SUB, and ISZ are elided
-- but you can still use them:
let DECR = \n -> -- (decrement n by one)
let SUB = \n m -> -- (subtract m from n)
let ISZ = \n -> -- (return TRUE if n == 0 and FALSE otherwise)

-- Note: Since ZERO is the smallest Church numeral,
-- calls to DECR and SUB bottom out at ZERO.
-- For example, DECR ZERO evaluates to ZERO,
-- and SUB TWO THREE evaluates to ZERO.

-- The Y combinator
let Y = \step -> (\x -> step (x x)) (\x -> step (x x))

2. (5 points) Fill in the blank below to define a lambda calculus function LEQ that takes two
Church numerals n and m as arguments, and returns TRUE if n is less than or equal to m and
FALSE otherwise. You may use any of the functions defined above.

let LEQ = \n m -> ____(write your answer in the box below)____

Solution: The idea here is to observe that if n is less than m, then SUB n m will evaluate
to ZERO, so all we need to do is test if that’s the case: ISZ (SUB n m). Answers that do
something equivalent but more verbosely, like ITE (ISZ (SUB n m)) TRUE FALSE,
will also be accepted.
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3. In the famous Fibonacci number sequence, each number is the sum of the two preceding ones.
If we begin with 0 and 1, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, . . .. Fill in the blanks in the
program below to define a recursive lambda calculus function FIB, where FIB n returns the
nth number (indexed from 0) in the above sequence. For example:

FIB ZERO =˜> ZERO
FIB ONE =˜> ONE
FIB TWO =˜> ONE
FIB THREE =˜> TWO
FIB FOUR =˜> THREE
FIB FIVE =˜> FIVE

You may assume that FIB is only called with non-negative integers represented as Church
numerals. You may use any of the functions defined on the previous page, and you may also
use LEQ from the previous question. Any other helper functions you must define yourself.
You must use recursion for full credit.

let FIB1 = \rec -> \n -> ITE _____(part 3(a))_______
_____(part 3(b))_______
_____(part 3(c))_______

let FIB = ______(part 3(d))_______

a. (5 points) 3(a):

Solution: This is where we check a condition to know whether we are in the base case
or not. The correct answer depends in part on what is in 3(b). (ISZ n), (LEQ n
ONE), or (LEQ n TWO) could all be correct, depending on what is in part 3(b).

b. (5 points) 3(b):

Solution: This is the base case. The correct answer depends in part on what is in 3(a).
ZERO, n, or even (ITE (ISZ n) ZERO ONE) could all be correct, depending on
what is in part 3(a).

c. (5 points) 3(c):

Solution: This is the recursive case. The correct answer depends in part on what is in
3(a) and 3(b). For example, if 3(a) is LEQ n ONE and 3(b) is n, then a correct answer
here is (ADD (rec (DECR n)) (rec (DECR (DECR n)))). You could also
use (SUB n TWO) instead of (DECR (DECR n)). See below for another approach.

d. (5 points) 3(d):

Solution:
Y FIB1
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Solution: Here is an alternative correct answer that does not use LEQ. (SUB n TWO)
would work instead of (DECR (DECR n)) here, too.

3(a): (ISZ n)
3(b): ZERO
3(c): (ISZ (DECR n))

ONE
(ADD (rec (DECR n))

(rec (DECR (DECR n)))))
3(d): Y FIB1

Part 2: Haskell

4. For each part of this question, write the type of the specified Haskell expression. Your answer
should be the same as what GHCi’s :t would say, modulo names of type variables. (For
example, if GHCi would say an expression has type p1 -> p2, then answers like a -> b
or b -> a would be correct, but a -> a would be incorrect since p1 and p2 are different
type variables.)

a. (5 points) True : [False, True, False]

Solution: [Bool]

b. (5 points) \x y -> "charizard"

Solution: a -> b -> String (any names for the two type variables are OK, as
long as they’re different)

c. (5 points) foldr (++) "" ["mew", "lucario", "squirtle"]

Solution: String

d. (5 points) \x -> if x then [x] else [False]

Solution: Bool -> [Bool]

e. (5 points)
\x -> case x of

Just s -> s
Nothing -> "Sorry, there’s nothing here!"

Solution: Maybe String -> String

f. (5 points) map (\x y -> x) (foldr (++) [] [[True, False], [True]])

Solution: [a -> Bool] (any name for the type variable is OK)
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5. For each part of this question, write a Haskell expression that has the specified type. There may
be many correct answers, but each of these questions can be answered with a short one-liner,
so for full credit, aim for simplicity. There is no need to use Haskell library functions here.

a. (5 points) [(Bool, String)]

Solution: Many correct answers. Something like this would be correct:
[(True, "rayquaza")]

b. (5 points) Bool -> String

Solution: Many correct answers. Something like this would be correct:
\x -> if x then "tentacool" else "ninetales"

c. (5 points) (Bool -> String) -> [String]

Solution: Many correct answers. Something like this would be correct:
\f -> [f True, "venusaur"]

Note that something like \f -> [f True, f False] isn’t correct because it doesn’t
constrain the type of f enough.

d. (5 points) a -> a

Solution: The expected answer here is
\x -> x

or something alpha-equivalent to it.

6. The Haskell library function toUpper :: Char -> Char converts characters to upper
case.

a. (5 points) What does
map (\x -> map toUpper x) ["foo", "bar", "baz"]

evaluate to?
⃝ Syntax error
⃝ Type error
√

["FOO","BAR","BAZ"]

⃝ ["Foo","Bar","Baz"]

b. (5 points) Suppose we want to translate the expression from part (a) to use list compre-
hensions instead of map. Which of the following is an accurate translation?

√
[ [ toUpper c | c <- x ] | x <- ["foo", "bar", "baz"]]

⃝ [ toUpper x | x <- ["foo", "bar", "baz"]]

⃝ [ [ c | c <- toUpper x ] | x <- ["foo", "bar", "baz"]]

⃝ [ toUpper c | c <- [ x | x <- ["foo", "bar", "baz"]]]

Page 5



Part 3: Working with Abstract Syntax Trees

Consider the following data type for abstract syntax trees of lambda calculus expressions:

data LCExpr = Var String | Lam String LCExpr | App LCExpr LCExpr

For example, we would represent the lambda calculus expression \f -> \y -> g y with
the LCExpr

Lam "f" (Lam "y" (App (Var "g") (Var "y")))

7. (5 points) Translate the following lambda calculus expression into the corresponding LCExpr:

(\x -> (\y -> ((\z -> y) (x z))))

Solution:

Lam "x" (Lam "y" (App (Lam "z" (Var "y"))
(App (Var "x") (Var "z"))))
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8. (15 points) For this problem, you may use the Haskell library functions described in the
Haskell Reference on the last page of the exam.
Let us define the depth of a lambda calculus expression as follows:

• The depth of a variable is 1.

• The depth of a lambda abstraction \x -> e is 1 + the depth of e.

• The depth of an application e1 e2 is 1 + the maximum of the depth of e1 and the depth
of e2.

Write a Haskell function depth that takes an LCExpr and returns its depth. Here are some
sample calls to depth:

> depth (Var "x")
1
> depth (Lam "x" (Var "x"))
2
> depth (Lam "f" (Lam "y" (App (Var "g") (Var "y"))))
4
> depth (App (Lam "x" (Lam "y" (Var "y"))) (App (Var "q") (Var "z")))
4

The depth type signature is provided below for you. Hint: You can solve this problem in 3
lines of code, and the arithmetic operations on the last page of the exam will be a big help.

depth :: LCExpr -> Int

Solution: Various solutions are possible here; here’s something simple that works:

depth (Var id) = 1
depth (Lam id e) = 1 + depth e
depth (App e1 e2) = 1 + max (depth e1) (depth e2)
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9. In lecture, we saw how we can implement custom instances of the Eq and Ord typeclasses for
any type we want. Let’s implement instances of Eq and Ord for the LCExpr type.

Now that we can compute the depth of LCExprs, let’s say that LCExprs are equal if they
have the same depth, and not equal otherwise. Likewise, for LCExprs e1 and e2, let’s say
that e1 <= e2 if e1’s depth is less than or equal to e2’s depth.1

a. (5 points) Implement an Eq instance for LCExpr that will give us the behavior described
above. The Eq instance declaration and (==) type signature are provided below for you.
You may use the depth function you wrote for the previous question. Hint: You can
solve this problem in 1 line of code.
instance Eq LCExpr where

(==) :: LCExpr -> LCExpr -> Bool

Solution:
(==) e1 e2 = depth e1 == depth e2

b. (5 points) Now implement an Ord instance for LCExpr that will give us the behavior
described above. The Ord instance declaration and (<=) type signature are provided
below for you. You may use the depth function you wrote for the previous question.
Hint: You can solve this problem in 1 line of code.
instance Ord LCExpr where
(<=) :: LCExpr -> LCExpr -> Bool

Solution:
(<=) e1 e2 = depth e1 <= depth e2

c. (5 points) Haskell’s list library has a sort function of type Ord a => [a] -> [a].
The sort function arranges the elements of the input list from smallest to largest. Any
elements that are considered equal remain in the order they appeared in the input.
Now that we have our Eq and Ord instances in place for LCExpr, what would the fol-
lowing expression evaluate to?
sort [Var "z", App (Var "x") (Var "z"), Lam "y" (Var "y"), Var "x"]

Solution:
[Var "z",Var "x",App (Var "x") (Var "z"),Lam "y" (Var "y")]

1These are admittedly strange definitions of program equality and ordering, but let’s just roll with it.
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10. (15 points) For this problem, you may use the Haskell library functions described in the
Haskell Reference on the last page of the exam.
An occurrence of a variable in a lambda calculus expression is free if it’s not in the scope of an
enclosing lambda abstraction. For example, in the expressions \x -> x and \x -> (\y -> x),
the variable x is bound by a \x binder. In the following expressions, x is free:

x y -- no binders at all (both x and y occur free)
\y -> x -- no binder for x
\z -> (\y -> x) -- no binder for x
(\x -> y) x -- x occurs outside of the \x binder

For this question, you will define a Haskell function freeVars that takes an LCExpr and
returns a list of variables that occur free in it (in any order). Here are some sample calls to
freeVars:

> freeVars (Var "x")
["x"]
> freeVars (Lam "y" (Var "y"))
[]
> freeVars (App (Var "f") (Var "x"))
["f","x"]
> freeVars (Lam "f" (Lam "y" (App (Var "g") (Var "y"))))
["g"]
> freeVars (App (Var "x") (Lam "x" (Var "x")))
["x"]
> freeVars (App (Lam "x" (Var "y")) (Var "x"))
["y","x"]

For full credit, a variable that occurs free more than once in an expression should only ap-
pear once in the list returned by freeVars. Thus freeVars (App (Var "y") (Var
"y")) should evaluate to ["y"]. The freeVars type signature is provided below for you.
Hint: You can solve this problem in 3 lines of code, and the list operations on the last page of
the exam will be a big help.

freeVars :: LCExpr -> [String]

Solution: Various solutions are possible here; here’s something simple that works:

freeVars (Var id) = [id]
freeVars (Lam id expr) = freeVars expr \\ [id]
freeVars (App e1 e2) = nub (freeVars e1 ++ freeVars e2)
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Haskell Reference
• (+) :: Num a => a -> a -> a

Returns the sum of its two arguments, e.g.,

> 3 + 4
7

• max :: Ord a => a -> a -> a

Returns the maximum of its two arguments, e.g.,

> max 3 4
4

• (++) :: [a] -> [a] -> [a]

Append two lists, e.g.,

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
> "apple" ++ "orange"
"appleorange"

• nub :: [a] -> [a]

Remove duplicate elements from a list, e.g.,

> nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]

• (\\) :: [a] -> [a] -> [a]

Compute the difference of two lists. In the result of xs \\ ys, the first occurrence of each
element of ys in turn (if any) has been removed from xs. Thus ((xs ++ ys) \\ xs) == ys,
e.g.,

> ["a","b","c"] \\ ["a"]
["b","c"]
> ["a","b","c","a"] \\ ["a","c"]
["b","a"]
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