CSE114A, Spring 2022: Midterm Exam

Instructor: Lindsey Kuper

May 3, 2022

Student name: \qquad

CruzID (the part before the "@" in your UCSC email address): \qquad

This exam has 11 questions and 120 total points.

Instructions

- Please write directly on the exam.
- You have 95 minutes to complete this exam. You may leave when you are finished.
- This exam is closed book. You may use one double-sided page of notes, but no other materials.
- Avoid seeing anyone else's work or allowing yours to be seen.
- Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communicate with anyone but an exam proctor.
- To ensure fairness (and the appearance thereof), proctors will not answer questions about the content of the exam. If you are unsure of how to interpret a problem description, state your interpretation clearly and concisely. Reasonable interpretations will be taken into account by graders.

Good luck!
(this page intentionally left blank)

Part 1: Lambda calculus

1. Consider the following lambda calculus expression, which we will name EXPR1:
($\backslash x$ y z -> y (x y z)) (a a b -> a b)
a. (5 points) Choose the best answer:
(a) EXPR1 is in normal form
(b) After 1β-reduction step, EXPR1 will be in normal form
(c) After 2β-reduction steps, EXPR1 will be in normal form
(d) After 3 or more β-reduction steps, EXPR1 will be in normal form
(e) EXPR1 does not have a normal form
b. (5 points) After a single β-reduction step on EXPR1, what would the resulting expression be? Write your answer in the box below. If no β-reduction step is possible, write "no β-reduction possible".
2. Consider the following lambda calculus expression, which we will name EXPR2:
(\a b -> a b) ($\backslash \mathrm{f}$ x -> f (f x))
a. (5 points) Choose the best answer:
(a) EXPR2 is in normal form
(b) After 1β-reduction step, EXPR2 will be in normal form
(c) After 2β-reduction steps, EXPR2 will be in normal form
(d) After 3 or more β-reduction steps, EXPR2 will be in normal form
(e) EXPR2 does not have a normal form
b. (5 points) After a single β-reduction step on EXPR2, what would the resulting expression be? Write your answer in the box below. If no β-reduction step is possible, write "no β-reduction possible".
3. Consider the following lambda calculus expression, which we will name EXPR3:

$$
\text { \a b -> (} \backslash \mathrm{f} x \mathrm{y} \text {-> f } \mathrm{x} y) \mathrm{a} b(\backslash \mathrm{x} y->\mathrm{z} y)
$$

a. (5 points) Choose the best answer:
(a) No variables occur free in EXPR3
(b) a and b occur free in EXPR3
(c) a, b, and z occur free in EXPR3
(d) z occurs free in EXPR3
b. (7 points) Which of the following expressions can be obtained from EXPR3 with one or more β-reductions?
(a) $\backslash \mathrm{a} b->\mathrm{a} b(\backslash \mathrm{x} y->\mathrm{z} y)$
(b) a b ($\backslash x$ y $->\mathrm{z} y$)
(c) $\backslash \mathrm{a}$ b $->\mathrm{a}(\mathrm{b}(\backslash \mathrm{x}$ y $->\mathrm{z}$ y))

c. (3 points) Which of the following is a correct α-renaming of EXPR3?
(a) $\backslash q \mathrm{r}->(\backslash f \mathrm{x} y->\mathrm{f} \mathrm{x} y) \mathrm{a} b(\backslash \mathrm{x} y->\mathrm{z} y)$

(d) $\backslash \mathrm{a} b->(\backslash f \mathrm{~g} h->\mathrm{f} g \mathrm{~h}) \mathrm{a} b(\backslash \mathrm{~g} h->\mathrm{z} y)$
d. (10 points) Evaluate

EXPR3 ($\backslash x$-> x) (\y -> y)
to normal form with a series of β-reduction steps. Show your work in the box below.

Page 2
4. (10 points) Consider the following lambda calculus combinators (a combinator is just a lambda calculus term with no free variables):

```
let TRUE = \x y -> x
let FALSE = \x y -> y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> b1 b2 FALSE
let OR = \b1 b2 -> b1 TRUE b2
```

Use the above combinators to define a new combinator SAME with the following behavior:

- SAME b1 b2 should evaluate to TRUE if both b1 and b2 evaluate to TRUE.
- Likewise, SAME b1 b2 should evaluate to TRUE if both b1 and b2 evaluate to FALSE.
- SAME b1 b2 should evaluate to FALSE if one of b1 and b2 evaluates to TRUE and the other evaluates to FALSE.

You may use any of the above predefined combinators in your definition of SAME. You may assume that the arguments to SAME are expressions whose value is either TRUE or FALSE. Write your answer in the box below.
let $\mathrm{SAME}=$

Page 3

Part 2: Haskell

5. (5 points) What is the type of the following Haskell expression?
```
map (\s -> "hello " ++ s) ["apple", "orange"]
```

(a) String -> String
(b) [String] -> String
(c) String
(d) [String]
(e) Type error
6. (5 points) Suppose subtract Three is defined as follows:

```
subtractThree :: Int -> Int
subtractThree x = x - 3
```

What is the type of the following Haskell expression?

```
subtractThree (foldr (+) 0 [1,2,3])
```

(a) Int -> Int
(b) [Int] -> Int
(c) Int
(d) [Int]
(e) Type error
7. (5 points) What does the following Haskell expression evaluate to?

```
let f = \x -> x + 1
        g = filter (\y -> y > 1)
        in g (map f [0,1,2,3])
(a) \([2,3]\)
(b) \([2,3,4]\)
(c) \([3,4]\)
(d) Type error
```

8. (5 points) What is the type of the following Haskell expression?
```
let \(\mathrm{b}=3\) < 5 in
    case b of
    True -> (\s -> "hello, " ++ s)
    False -> (\s -> "goodbye, " ++ s)
    (a) String -> String
    (b) Bool -> String
    (c) String -> Bool -> String
    (d) Bool -> String -> String
    (e) Type error
```

9. For this question, you will define a Haskell function listify that takes as arguments an Int and some element, and returns a list of the specified number of repetitions of that element. For example, listify 35 evaluates to [5,5,5] and listify 2 "hi" evaluates to ["hi","hi"].
a. (5 points) What is the type signature of listify? Write your answer in the box below.
b. (10 points) Complete the below definition of listify. The base case is already filled in for you. Write the remaining part of the definition in the box below. Don't change the existing code, and don't use library functions other than the list constructors and simple arithmetic on Ints.
```
listify n x
    | n <= 0 = []
    <YOUR CODE HERE>
```

For the next two questions, consider the following data type:

```
data AExp = Num Int | Plus AExp AExp | Minus AExp AExp
```

10. (20 points) An AExp can represent an arithmetic expression. For example:

- 3 is represented by Num 3
- $3+4$ is represented by Plus (Num 3) (Num 4)
- $7-(3+12)$ is represented by

Minus (Num 7) (Plus (Num 3) (Num 12))
In the box below, define a Haskell function evalAExp that takes an AExp and returns the Int value of the arithmetic expression it represents. Here are some sample calls to evalAExp:

```
> evalAExp (Num 3)
3
> evalAExp (Plus (Num 3) (Num 4))
7
> evalAExp (Minus (Num 7) (Plus (Num 3) (Num 12)))
-8
```

The type signature of evalAExp is provided below for you. Do not use library functions other than simple arithmetic on Ints.

```
evalAExp :: AExp -> Int
```

11. (10 points) Instead of evaluating an AExp, we might want to simply look at a more readable representation of it. For this question, you will define a Haskell function showAExp that takes an AExp and returns a nicely formatted String of the expression it represents. Here are some sample calls to showAExp:
```
> showAExp (Num 3)
"3"
> showAExp (Plus (Num 3) (Num 4))
"(3 + 4)"
> showAExp (Minus (Num 7) (Plus (Num 3) (Num 12)))
"(7 - (3 + 12))"
```

Complete the below definition of showAExp. The type signature and base case are already filled in for you. Write the remaining part of the definition in the box below. Don't change the existing code, and don't use library functions other than the append (++) function.
The base case of showAExp uses the Haskell library function show to convert an Int to a String. (For example, show 3 evaluates to "3".) Do not use show elsewhere in the definition of showAExp.

```
showAExp :: AExp -> String
showAExp e = case e of
    Num i -> show i
    <YOUR CODE HERE>
```

Page 7

