
CSE114A, Fall 2022: Midterm Exam

Instructor: Owen Arden

October 27, 2022

Student name:

CruzID (the part before the “@” in your UCSC email address):

This exam has 6 questions and 123 total points.

Instructions

• Please write directly on the exam.

• For multiple choice questions, fill in the letter completely, e.g. from a to a

• You have 95 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communicate
with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about the content
of the exam. If you are unsure of how to interpret a problem description, state your interpretation clearly
and concisely. Reasonable interpretations will be taken into account by graders.

Good luck!

i

(this page intentionally left blank, you may use it for scratch paper but the contents will not be graded)

Part 1: Lambda calculus

1. Consider the following lambda calculus expression, which we will name EXPR1:

(\b -> ITE b trick treat) (OR (\x y -> x) (\x y -> y)) candy prank

a. (5 points) What are the free variables of EXPR1?
(a) b, x, y

(b) candy, prank

(c) trick, treat

(d) Choices (b) and (c)
(e) Choices (a) and (b)

b. (5 points) After a single β-reduction step on EXPR1, what would the resulting expression be?
(a) (\b -> ITE b trick treat) (OR candy (\x y -> y)) prank

(b) (ITE (OR (\x y -> x) (\x y -> y)) trick treat) candy prank

(c) (\b -> ITE b trick treat) (\x y -> x) candy prank

(d) Choices (b) or (c)
(e) None of the above

c. (5 points) What is the normal form of EXPR1?
(a) trick
(b) treat
(c) treat candy

(d) trick candy prank

(e) None of the above

2. Consider the following lambda calculus expression, which we will name EXPR2:

let F = (\rec l -> rec (PAIR (PLUS (FST l) (FST (SND l))) l))
(FIX F) (PAIR ONE (PAIR ZERO FALSE))

a. (5 points) What does EXPR2 evaluate to?
(a) (PAIR TWO (PAIR ONE (PAIR ONE (PAIR ZERO FALSE))))

(b) F (FIX F) (PAIR ONE (PAIR ZERO FALSE))

(c) STEP (FIX STEP)

(d) EXPR2 does not have a normal form.
(e) EXPR2 does not type check.

b. (5 points) Which of the following reductions of EXPR2 is valid? (Recall =*> denotes any sequence
of =a>, =b>, or =d> reductions.)

(a) =*> F (F (F (FIX F)))
(PAIR TWO (PAIR ONE (PAIR ONE (PAIR ZERO FALSE))))

(b) =*> (FIX F)
(PAIR TWO (PAIR ONE (PAIR ONE (PAIR ZERO FALSE))))

(c) =*> F (FIX F)
(PAIR FIVE (PAIR THREE
(PAIR TWO (PAIR ONE (PAIR ONE (PAIR ZERO FALSE))))))

(d) All of the above.
(e) None of the above.

Part 2: Haskell

3. (8 points) What does the following Haskell expression evaluate to?

let
f x = x + 1
g = \f x -> f (f x)
h f = \y -> y (y f)
i k = k
k = \a b -> a i b

in
k g (flip h) f 0

(a) 0

(b) 2

(c) 4

(d) Infinite loop

(e) Type Error

4. Consider the following Haskell function:

mkpal s = s ++ (helper s)
where

helper [] = ""
helper (c:cs) = (helper cs) ++ [c]

a. (5 points) What is the type of mkpal?
(a) String -> [String]

(b) [String] -> [String]

(c) String -> String

(d) [String] -> [Char]

(e) None of the above

b. (5 points) What does mkpal "foobarbaz" evaluate to?
(a) "foobarbaz"
(b) "zabraboof"
(c) "foobarbazbazbarfoo"
(d) "foobarbazzabraboof"
(e) None of the above

c. (5 points) Is mkpal tail recursive?
(a) Yes
(b) No, but a tail recursive implementation is not possible.
(c) No, but a tail recursive implementation is possible.

Page 2

5. Turtle graphics1 are an approach to drawing figures by directing a cursor (or “turtle”) around a canvas using
simple set of commands. For example, the program below would draw a (regular) hexagon with sides of
length 50 and internal angles of 120 degrees since turning the turtle left 60 degrees creates an angle of
180− 60 = 120.

repeat 6 {
forward 50
rotate_left 60

}

(a) Turtle program (b) Program output

For the next questions, consider the following definitions that describe a simple language for turtle graphics.

data TurtleCmd = Home -- return to starting position and orientation
| Forward Int -- move turtle forward by Int pixels
| Back Int -- move turtle forward by Int pixels
| RotateL Int -- rotate left by Int degrees
| RotateR Int -- rotate right by Int degrees
| Repeat Int [TurtleCmd] -- repeat a list of commands Int times

type Plan = [TurtleCmd]

a. (5 points) In the box below, write a Plan corresponding to the hexagon-drawing program above.

Solution:
[Repeat 6 [Forward 50, RotateL 60]]

1Turtle graphics were a central part of the Logo programming language. Look it up!

Page 3

b. (20 points) Now help complete an interpreter for a Plan program. For each basic TurtleCmd there is
a do function that applies the command to a Canvas value representing the state of the drawing and
turtle. You don’t have to worry about the definition of Canvas, just that you must provide the current
canvas to each do function. You may use the second box for any helper functions.
Hint: Note that there is (intentionally) no do function for Repeat: you must write Haskell code to
evaluate Repeat commands. You do not need the definition of Canvas to accomplish this.

doHome :: Canvas -> Canvas
doForward :: Canvas -> Int -> Canvas
doBack :: Canvas -> Int -> Canvas
doRotateL :: Canvas -> Int -> Canvas
doRotateR :: Canvas -> Int -> Canvas

eval :: Canvas -> Plan -> Canvas
eval c [] = c -- fill in the base case here

eval c (cmd:rest) =
let c’ = case cmd of -- fill in the body of the case function below

Solution: 1 point for each base case. 14 points for repeat:
• 4 points for pattern + calling helper
• 10 points for correct helper.

– 4 for base case
– 6 for inductive case

Home -> doHome c
Forward x -> doForward c x
Back x -> doBack c x
RotateL x -> doRotateL c x
RotateR x -> doRotateR c x
Repeat n cmds -> repeat c n cmds

in
eval c’ rest -- use the below box for helper functions or where clauses

Solution:

where
repeat c 0 _ = c
repeat c n cmds = repeat (eval c cmds) (n-1) cmds

Page 4

6. (25 points) Consider the following higher-order function gen:

gen :: (b -> Maybe (a, b)) -> b -> [a]
gen f b0 =

let go b = case f b of
Just (a, new_b) -> a : go new_b
Nothing -> []

in go b0

a. (5 points) Choose the best answer:
(a) gen always terminates (on any input)
(b) gen never terminates (on any input)
(c) gen may or may not terminate
(d) gen terminates if and only if f b terminates
(e) None of the above

b. (5 points) What does
gen (\b if b >= 5 then Nothing else Just (b,b+1)) 10 evaluate to?

(a) [10,9,8,7,6]
(b) [6,7,8,9,10]
(c) []
(d) Does not type check
(e) Does not terminate

c. (5 points) What does
gen (\b if b >= 10 then Nothing else Just (b,b+1)) 5 evaluate to?

(a) [9,8,7,6,5]
(b) [5,6,7,8,9]
(c) []
(d) Does not type check
(e) Does not terminate

d. (5 points) What does
take 5 (gen (\b if b < 5 then Nothing else Just (b,b+1)) 10) evaluate to?

(a) [5,6,7,8,9]
(b) [10,11,12,13,14]
(c) []
(d) Does not type check
(e) Does not terminate

e. (5 points) What does

helper [] = Nothing
helper (x:xs) = Just (x:xs)
gen helper (foldr (:) [] [6,7,8,9,10])

evaluate to?
(a) [10,9,8,7,6]
(b) [6,7,8,9,10]
(c) []
(d) Does not type check
(e) Does not terminate

Page 5

(this page intentionally left blank, you may use it for scratch paper but the contents will not be graded)

Page 6

1 Lambda calculus cheat sheet

-- Booleans --------------------------------
let TRUE =\x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Numbers ---------------------------------
let ZERO = \f x-> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x))
let FIVE = \f x -> f (f (f (f (f x))

-- Pairs -----------------------------------
let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Arithmetic ------------------------------
let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> -- return TRUE if n == 0 --
let DECR = \n -> -- decrement n by one --
let EQL = \a b -> -- return TRUE if a == b, otherwise FALSE --

-- Recursion -------------------------------
let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

Page 7

2 Haskell cheat sheet

data Maybe a = Nothing | Just a

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

-- returns the elements of a list in reverse order.
reverse :: [a] -> [a]

-- Extract the first element of a list, which must be non-empty.
head :: [a] -> a

-- Extract the elements after the head of a list, which must be non-empty.
tail :: [a] -> [a]

-- Extract the first n elements of a list.
take :: Int -> [a] -> [a]

Page 8

(this page intentionally left blank, you may use it for scratch paper but the contents will not be graded)

Page 9

(this page intentionally left blank, you may use it for scratch paper but the contents will not be graded)

Page 10

