
CSE114A, Spring 2023: Final Exam

Instructor: Lindsey Kuper

June 13, 2023

Student name:

CruzID (the part before the “@” in your UCSC email address):

This exam has 18 questions and 140 total points.

Instructions

• Please write directly on the exam.

• For short answer questions, please write your answer in the provided boxes. You can use
space outside of the boxes as scratch space, but we won’t see or grade it.

• For multiple choice questions, please circle the correct choice.

• You have 180 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materi-
als.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not
communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about
the content of the exam. If you are unsure of how to interpret a question, state your in-
terpretation clearly and concisely. Reasonable interpretations will be taken into account by
graders.

• We will give partial credit for partially correct answers when it makes sense to do so. A
partially correct answer is better than leaving an answer blank.

Good luck!

i

This page is for your use as scratch space. Anything you write here will be ungraded.

Part 1: Lambda Calculus
1. (4 points) A lambda calculus expression is in normal form if it cannot be further reduced.

Evaluate the following lambda calculus expression to normal form using a series of β-reduction
steps (and only β-reduction steps – you shouldn’t need anything else). Start each line with
=b>, as if you were using Elsa, and do one β-reduction step per line.

Note: There may be multiple correct ways to reduce the expression. A correct solution is any
solution that Elsa will accept as correct.

(\b f g -> b f g) (\x y -> x) (\z -> z) (\f x -> (\q -> q) x)

2. (3 points) Which of the following lambda calculus expressions is in normal form?

(a) (\x -> x x) (\x -> x x)

(b) \step -> (\x -> step (x x)) (\x -> step (x x))

(c) \s z -> s z

(d) (a), (b), and (c)

(e) (b) and (c)

(f) None of the above

let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y

let PAIR = \x y b -> ITE b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

let SUC = \n f x -> f (n f x)
let ADD = \n m -> n SUC m

-- The definitions of DECR, SUB, and ISZ are elided
-- but you can still use them:
let DECR = \n -> -- (decrement n by one)
let SUB = \n m -> -- (subtract m from n)
let ISZ = \n -> -- (return TRUE if n == 0 and FALSE otherwise)

-- The Y combinator
let Y = \step -> (\x -> step (x x)) (\x -> step (x x))

3. For this question, the definitions above may be helpful.

a. (3 points) What does the lambda calculus expression
ADD (SND ((\x y b -> ITE b x y) TRUE THREE)) (\f x -> f x)

evaluate to?
(a) Syntax error
(b) ONE
(c) TWO
(d) THREE
(e) FOUR

b. (3 points) What does the lambda calculus expression
ADD (FST ((\x y b -> ITE b x y) FALSE THREE)) (\f x -> f x)

evaluate to?
(a) Syntax error
(b) ONE
(c) TWO
(d) THREE
(e) FOUR

Page 2

4. In the triangular number sequence, the zeroth entry is 0, and the nth entry (indexed from 0) is
the sum of n and the (n− 1)th entry. Therefore the sequence is 0, 1, 3, 6, 10, 15,

(In other words, the zeroth entry is 0, the first entry is equal to 1 + 0, the second entry is equal
to 2 + 1 + 0, the third entry is equal to 3 + 2 + 1 + 0, and so on.)

Fill in the blanks in the program below to define a recursive lambda calculus function TRI,
where TRI n returns the nth number (indexed from 0) in the above sequence, represented as
a Church numeral. For example:

TRI ZERO =˜> ZERO
TRI ONE =˜> ONE
TRI TWO =˜> THREE
TRI THREE =˜> \f x -> f (f (f (f (f (f x))))) -- 6
TRI FOUR =˜> \f x -> f (f (f (f (f (f (f (f (f (f x))))))))) -- 10

You may assume that TRI is only called with non-negative integers represented as Church
numerals. You may use any of the functions defined on page 2. Any other helper functions
you must define yourself. You must use recursion for full credit.

let TRI1 = \rec -> \n -> ITE _____(part 5(a))_______
_____(part 5(b))_______
_____(part 5(c))_______

let TRI = ______(part 5(d))_______

a. (4 points) 5(a):

b. (4 points) 5(b):

c. (4 points) 5(c):

d. (4 points) 5(d):

Page 3

Part 2: Haskell

5. For each part of this question, write the type of the specified Haskell expression. Your answer
should be the same as what GHCi’s :t would say, modulo names of type variables. (For
example, if GHCi would say an expression has type p1 -> p2, then answers like a -> b
or b -> a would be correct, but a -> a would be incorrect since p1 and p2 are different
type variables.)

a. (4 points) \x y -> [True, False, x]

b. (4 points) map (\x -> if x then "xatu" else "mew") [True, False]

c. (4 points) map (\x -> if x then "vaporeon" else "espeon")

d. (4 points)
\x -> case x of

Just val -> (val, x)
Nothing -> ("cramorant", x)

e. (4 points)
\x -> case x of

Just val -> val
Nothing -> ["dodrio", "delphox", "dragonite"]

Page 4

6. (8 points) For this question, you will implement a Haskell function foo that takes three argu-
ments: a default value of type b, a function of type a -> b, and a value of type Maybe a.
If the Maybe a value is Nothing, then foo returns the default value. Otherwise, it applies
the provided function to the value inside the Just and returns the result.

Hint: You can implement foo in two lines of code, one for each of the two cases to handle.

foo :: b -> (a -> b) -> Maybe a -> b

7. (3 points) Which of the following expressions does not have type String? Hint: If you need
them, the type signatures of map, foldl, and (++) are in the Haskell Reference on the last
page of the exam.

(a) map (\x -> []) "lucario"

(b) foldl (++) "pikachu" []

(c) foldl (++) "" []

(d) foldl (\x y -> x) [] ["ninetales"]

(e) foldl (\x y -> "aipom") "" [1, 2, 3]

(f) (a) and (e)

8. (3 points) Which of the following list comprehensions does not have type [Bool]?

(a) [if x == 3 then False else True | x <- [1, 2, 3]]

(b) [(\y -> if y then False else True) x | x <- [True, False]]

(c) [if x then False else True | x <- [1, 2, 3]]

(d) [(\y -> if y == 3 then False else True) 3 | x <- [True]]

(e) (c) and (d)

Page 5

Part 3: Abstract Syntax Trees, Interpreters, Environments, and Scope

For the questions in this section, we will use the following Expr data type. It defines the
grammar of abstract syntax trees for a little language with numbers, variables, addition ex-
pressions, lambda (function definition) expressions, application (function call) expressions,
and let-expressions.

data Expr = ENum Int | EVar Id | EPlus Expr Expr
| ELam Id Expr | EApp Expr Expr | ELet Id Expr Expr

type Id = String

For example, we would represent the expression

let f = \x -> x in
f (3 + 4)

with the Expr

ELet "f" (ELam "x" (EVar "x"))
(EApp (EVar "f") (EPlus (ENum 3) (ENum 4)))

9. Be the parser! Translate the following expressions into their corresponding Exprs.

a. (4 points)
let n = 2 in

let m = 3 + n in
\x -> m + x

b. (4 points)
(\x -> x) (\z -> (\y -> y z))

Page 6

10. If we typed in an Expr at the GHCi prompt, we’d get an error saying that there is no instance
of the Show typeclass for the Expr type. Let’s fix that by implementing a custom instance
of Show for Exprs. To do so, we need to implement a function show with type signature
Expr -> String.

Here are some examples of the behavior we should see in GHCi after implementing show:

ghci> EPlus (ENum 3) (EPlus (ENum 4) (EVar "z"))
(3 + (4 + z))
ghci> EApp (EVar "x") (EVar "y")
(x y)
ghci> EApp (EApp (EVar "x") (EVar "y")) (EPlus (ENum 3) (EVar "z"))
((x y) (3 + z))
ghci> ELet "x" (ENum 3) (EPlus (EVar "x") (ENum 2))
let x = 3 in (x + 2)
ghci> ELet "f" (ELam "x" (EVar "x")) (EApp (EVar "f") (ENum 3))
let f = (\x -> x) in (f 3)

The implementation of show is below, with some blanks for you to fill in. Hint: The EPlus,
EApp, and ELet cases are not that different from the provided ELam case.

instance Show Expr where
show :: Expr -> String
show (ENum n) = show n
show (EVar s) = s
show (EPlus e1 e2) = ________(11(a))________
show (ELam id body) = "(\\" ++ id ++ " -> " ++ show body ++ ")"
show (EApp e1 e2) = ________(11(b))________
show (ELet id e1 e2) = ________(11(c))________

a. (4 points) 11(a):

b. (4 points) 11(b):

c. (4 points) 11(c):

Page 7

11. We will be writing an interpreter for Exprs, but first, we need to set up some machinery. First,
we’ll define a type of Values that expressions can evaluate to:

data Value = VNum Int | VClos Env Id Expr

We can now define a type of environments that associate variable identifiers with values. We
will represent an environment as a list of pairs of Id and Value:

type Env = [(Id, Value)]

a. (4 points) The Haskell function lookupInEnv takes as arguments a variable identifier
and an environment, and returns the value that the specified identifer is associated with in
the environment. Fill in the blank below to complete the definition of lookupInEnv.
lookupInEnv :: Id -> Env -> Value
lookupInEnv id [] = error "unbound variable"
lookupInEnv id ((x,val):xs) = ________(11(a))________

b. (4 points) Write a Haskell function extendEnv that takes as arguments a variable iden-
tifier, a value, and an environment, and returns a new environment that extends the old
one with a binding for the specified identifier and value. The type signature is provided
for you. Hint: With the way we are representing environments, this is a one-liner.
extendEnv :: Id -> Value -> Env -> Env

12. We can now define an interpreter eval that takes an environment of type Env and an ex-
pression of type Expr and returns a value of type Value. Fill in the blanks in the following
definition of eval.

Page 8

eval :: Env -> Expr -> Value
eval env (ENum n) = VNum n
eval env (EVar s) = lookupInEnv s env
eval env (EPlus e1 e2) = case (eval env e1, eval env e2) of

(VNum n1, VNum n2) -> VNum (n1 + n2)
_ -> error "type error: not a number"

eval env (ELam id body) = VClos env id body
eval env (EApp e1 e2) = case ________(12(a))________ of

VClos ce id e -> let argVal = ________(12(b))________
extendedEnv = ________(12(c))________

in eval extendedEnv e
_ -> error "type error: not a function"

eval env (ELet id e1 e2) =
let v1 = eval env e1

extendedEnv = ________(12(d))________
in ________(12(e))________

a. (4 points) 12(a):

b. (4 points) 12(b):

c. (4 points) 12(c):

d. (4 points) 12(d):

e. (4 points) 12(e):

Page 9

13. Consider the following Nano program:

let a = 3 in
let f = \x y -> x + y + a in

let x = 4 in
let a = 5 in
f x a

a. (3 points) Under static scope, what would the above program evaluate to?
(a) error: multiple declarations of a variable
(b) error: unbound variable
(c) 14
(d) 12
(e) 10

b. (3 points) Under dynamic scope, what would the above program evaluate to?
(a) error: multiple declarations of a variable
(b) error: unbound variable
(c) 14
(d) 12
(e) 10

Page 10

Part 4: Types, Unification, and Type Inference

14. (3 points) Which of the following is a unifier
for the types String and a -> b?

(a) [(a, String), (b, String)]

(b) [(a -> b, String)]

(c) [(String, a -> b)]

(d) (b) and (c)

(e) Cannot unify

15. (3 points) Which of the following is a unifier
for the types Int -> Int and a -> b?

(a) [(Int, a), (Int, b)]

(b) [(a, Int), (b, Int)]

(c) [(a, Int), (b, Int), (c, String)]

(d) (a), (b), and (c)

(e) (b) and (c)

(f) Cannot unify

16. (3 points) Which of the following is a unifier
for the types a -> b and (b -> Bool) -> c?

(a) [(b, c), (a, c -> Bool)]

(b) [(a, Bool -> Bool), (b, Bool), (c, Bool -> Bool)]

(c) [(a, Bool -> Bool), (b, Bool), (c, Bool)]

(d) (a) and (c)

(e) Cannot unify

17. (3 points) Which of the following is the most general unifier
for the types a -> b and Int -> c -> Int?

(a) [(a, Int), (b, c -> Int)]

(b) [(a, Int -> c), (b, Int)]

(c) [(a, Int), (b, Int -> Int), (c, Int)]

(d) [(a, Int), (b, c -> Int), (c, Int)]

(e) Cannot unify

Page 11

18. Here are some of the typing rules for the Nano language:

G,(x,T1) |- e :: T2 (x,T) in G
[T-Lam] -------------------------- [T-Var] -----------

G |- (\x -> e) :: T1 -> T2 G |- x :: T

G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] ---------------------------------------

G |- (e1 e2) :: T2

G |- e1 :: T1 G,(x,T1) |- e2 :: T2
[T-Let] ------------------------------------- [T-Int] -------------

G |- let x = e1 in e2 :: T2 G |- n :: Int

Below is a partial typing derivation for the Nano expression let y = 3 in (\x -> x) y.
We are using the following abbreviations for type environments:

G1 = [(y,Int)]
G2 = [(y,Int),(x,Int)]

For each blank below, fill in a type or the name of a typing rule to complete the typing deriva-
tion.

(x,Int) in G2
[_18a_]----------------

G2 |- x :: _18b_ (y,Int) in G1
[_18c_]------------------------ [_18d_]----------------

G1 |- (\x -> x) :: _18e_ G1 |- y :: _18f_
[_18g_]---------------- [_18h_]--

[] |- 3 :: _18i_ G1 |- (\x -> x) y :: _18j_
[_18k_]--

[] |- let y = 3 in (\x -> x) y :: Int

a. (1 point) 18(a):

b. (1 point) 18(b):

c. (1 point) 18(c):

Page 12

d. (1 point) 18(d):

e. (1 point) 18(e):

f. (1 point) 18(f):

g. (1 point) 18(g):

h. (1 point) 18(h):

i. (1 point) 18(i):

j. (1 point) 18(j):

k. (1 point) 18(k):

Page 13

Haskell Reference
• map :: (a -> b) -> [a] -> [b]

• foldl :: (b -> a -> b) -> b -> [a] -> b

• (++) :: [a] -> [a] -> [a]

Append two lists, e.g.,

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
> "apple" ++ "orange"
"appleorange"

Page 14

