
CSE114A, Spring 2022: Final Exam

Instructor: Lindsey Kuper

June 6, 2022

Student name:

CruzID (the part before the “@” in your UCSC email address):

This exam has 21 questions and 200 total points.

Instructions

• Please write directly on the exam.

• You have 180 minutes to complete this exam. You may leave when you are
finished.

• This exam is closed book. You may use one double-sided page of notes, but no
other materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No additional notes, books, laptops, phones, or other elec-
tronic devices. Do not communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer ques-
tions about the content of the exam. If you are unsure of how to interpret a
problem description, state your interpretation clearly and concisely. Reasonable
interpretations will be taken into account by graders.

Good luck!

i

(Blank page for use as scratch paper)

Part 1: Lambda calculus (50 points)
1. Consider the following lambda calculus expression, which we will name EXPR1:

\f x -> f ((\g y -> g y) f x)

a. (5 points) Choose the best answer:
(a) EXPR1 is in normal form
(b) After 1 β-reduction step, EXPR1 will be in normal form
(c) After 2 β-reduction steps, EXPR1 will be in normal form
(d) After 3 or more β-reduction steps, EXPR1 will be in normal form
(e) EXPR1 does not have a normal form

b. (5 points) After a single β-reduction step on EXPR1, what would the result-
ing expression be? Write your answer in the box below. If no β-reduction
step is possible, write “no β-reduction possible”.

2. Consider the following lambda calculus expression, which we will name EXPR2:

(\y -> y y) (\z -> z z)

a. (5 points) Choose the best answer:
(a) EXPR2 is in normal form
(b) After 1 β-reduction step, EXPR2 will be in normal form
(c) After 2 β-reduction steps, EXPR2 will be in normal form
(d) After 3 or more β-reduction steps, EXPR2 will be in normal form
(e) EXPR2 does not have a normal form

b. (5 points) After a single β-reduction step on EXPR2, what would the result-
ing expression be? Write your answer in the box below. If no β-reduction
step is possible, write “no β-reduction possible”.

For the next two questions, the following lambda calculus definitions will be
useful:

-- Church numerals
let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))

-- Booleans
let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y

-- Pairs
let PAIR = \x y b -> ITE b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Arithmetic
let SUC = \n f x -> f (n f x)
let ADD = \n m -> n SUC m
let MUL = \n m -> n (ADD m) ZERO
let SKIP1 = \f p -> PAIR TRUE (ITE (FST p)

(f (SND p))
(SND p))

let DEC = \n -> SND (n (SKIP1 SUC) (PAIR FALSE ZERO))
let SUB = \n m -> m DEC n
let ISZ = \n -> n (\z -> FALSE) TRUE

-- The Y combinator
let FIX = \s -> (\x -> s (x x)) (\x -> s (x x))

Page 2

3. (5 points) What does the following lambda calculus term evaluate to?

SUC (SUC (\f x -> f ((\g y -> g y) f x)))

(a) FALSE

(b) TWO

(c) THREE

(d) FOUR

(e) None of the above

4. (5 points) What does the following lambda calculus term evaluate to?

FST (SND ((\x y b -> b x y) INC (PAIR FALSE TWO)))

(a) FALSE

(b) PAIR FALSE TWO

(c) THREE

(d) INC

(e) None of the above

Page 3

5. The factorial of a positive integer n is the product of all positive integers less
than or equal to n. For this question, you will fill in the blanks in the program
below to define a function FACT where FACT n returns the factorial of n. (You
can assume that FACT is only called with positive integers.)

You may use any of the functions defined on the previous page. Any other helper
functions you must define yourself. You must use recursion for full credit.

let FACT1 = \f n -> ITE _____(3(a))_______
_____(3(b))_______
_____(3(c))_______

let FACT = ______(3(d))_______

a. (5 points) 3(a):

b. (5 points) 3(b):

c. (5 points) 3(c):

d. (5 points) 3(d):

Page 4

Part 2: Haskell (55 points)

For this section, you may wish to use the Haskell Reference on the last page.

6. (5 points) Which of the following Haskell expressions has the type
[(String, Bool)]?

(a) [("apple", False)]

(b) ("orange", True) : []

(c) [("apple", False)] : [("orange", True)] : []

(d) (a) and (b)

(e) (a), (b), and (c)

7. (5 points) What does the following Haskell expression evaluate to?

let f = foldl (.) (\x -> x) in
let g = f [(\x -> x - 1), (\x -> x - 2)] in

g 2

(a) [1, 0]

(b) -1

(c) 0

(d) [-1]

(e) Type error

8. (5 points) What is the type of the following Haskell expression?

let l = filter (\n -> n <= 3) [1, 2, 3, 4] in
case l of

[] -> (\y -> True)
(x:xs) -> (\y -> False)

(a) a -> Bool

(b) [a] -> Bool

(c) [a] -> a -> Bool

(d) [a] -> b -> Bool

(e) Type error

Page 5

9. (5 points) What does the following Haskell expression evaluate to?

map ((\x -> "x + 5") . show) [1, 2, 3]

(a) [6, 7, 8]

(b) ["6", "7", "8"]

(c) ["x + 5","x + 5","x + 5"]

(d) ["15","25","35"]

(e) Type error

10. (10 points) Consider the function naiveLength, which returns the length of
a list:

naiveLength :: [a] -> Int
naiveLength [] = 0
naiveLength (x:xs) = 1 + naiveLength xs

For this question, you will define a function lengthTR that is a tail-recursive
version of naiveLength. You may use any of: a separately defined helper
function, a where clause in the definition of lengthTR, or foldl. Do not
use any other library functions other than those used in the above definition of
naiveLength.

lengthTR :: [a] -> Int

Page 6

The next two questions will use the following data type definitions for lambda
calculus expressions:

type Id = String
data LExpr = Var Id | Lam Id LExpr | App LExpr LExpr

11. (10 points) For this question, you will define a Haskell function occurs that
takes an Id and a LExpr as arguments and returns a Bool. occurs x e
returns True if x occurs in e, and False otherwise. For the purposes of this
question, a formal parameter does not count as a variable occurrence. Here
are some sample calls to occurs:

> occurs "x" (Var "x")
True
> occurs "x" (Lam "x" (Var "y"))
False
> occurs "y" (App (Var "f") (Var "x"))
False
> occurs "g" (Lam "f" (Lam "y" (App (Var "g") (Var "y"))))
True

Complete the below definition of occurs. The type signature and one of the
cases are already filled in for you. You may use any of the Haskell library func-
tions described in the Haskell Reference on the last page of the exam, but no
other library functions.

occurs :: Id -> LExpr -> Bool
occurs id1 (Var id2) = id1 == id2

Page 7

12. (15 points) For this question, you will define a Haskell function freeVars
that takes a LExpr as defined above and returns a list of its free variables (in any
order). Here are some sample calls to freeVars:

> freeVars (Var "x")
["x"]
> freeVars (Lam "y" (Var "y"))
[]
> freeVars (App (Var "f") (Var "x"))
["f","x"]
> freeVars (Lam "f" (Lam "y" (App (Var "g") (Var "y"))))
["g"]
> freeVars (App (Var "x") (Lam "x" (Var "x")))
["x"]

For full credit, a variable that occurs free more than once in an expression should
only appear once in the list returned by freeVars. Thus freeVars (App
(Var "y") (Var "y")) should evaluate to ["y"].

Complete the below definition of freeVars. The type signature is already
filled in for you. You may use any of the Haskell library functions described in
the Haskell Reference on the last page of the exam, but no other library functions.

freeVars :: LExpr -> [Id]

Page 8

Part 3: Scope, environments, and interpreters (63 points)

13. Consider the following Nano program:

let a = 1 in
let b = 2 in

let f = \x y -> x + y + a + b in
let a = 3 in
let b = 4 in

f a b

a. (5 points) Under static scope, what would the above program evaluate to?
(a) 6
(b) 10
(c) 14
(d) error: multiple declarations of a variable
(e) error: unbound variable

b. (5 points) Under dynamic scope, what would the above program evaluate
to?

(a) 6
(b) 10
(c) 14
(d) error: multiple declarations of a variable
(e) error: unbound variable

Page 9

14. Consider the following Nano program:

let a = 1 in
let b = 2 in

let f = \x -> x + a + b + c in
let a = 2 in

let c = 1 in
f a

a. (5 points) Under static scope, what would the above program evaluate to?
(a) 5
(b) 6
(c) 7
(d) error: multiple declarations of a variable
(e) error: unbound variable

b. (5 points) Under dynamic scope, what would the above program evaluate
to?

(a) 5
(b) 6
(c) 7
(d) error: multiple declarations of a variable
(e) error: unbound variable

Page 10

(Blank page for use as scratch paper)

Page 11

For the next two questions, carefully consider the following Haskell definitions:

type Id = String

data Expr = EInt Int | EVar Id | ELam Id Expr
| EApp Expr Expr | ELet Id Expr Expr

data Val a = VClos a Id Expr | VInt Int

class Env a where
emptyEnv :: a
extendEnv :: Id -> Val a -> a -> a
lookupInEnv :: Id -> a -> Val a

data ListEnv = ListEnv [(Id, Val ListEnv)]

instance Env ListEnv where
emptyEnv :: ListEnv
emptyEnv = ListEnv []

extendEnv :: Id -> Val ListEnv -> ListEnv -> ListEnv
extendEnv id val (ListEnv env) =

ListEnv ((id, val) : env)

lookupInEnv :: Id -> ListEnv -> Val ListEnv
lookupInEnv id (ListEnv []) =

error ("unbound variable: " ++ id)
lookupInEnv id (ListEnv ((x,v):xs))

| id == x = v
| otherwise = lookupInEnv id (ListEnv xs)

15. The code above defines (among other things) an Env type class that defines
the interface that an environment should implement: an emptyEnv value, and
extendEnv and lookupInEnv operations. One way to implement this inter-
face is with ListEnv, which represents an environment as a list of pairs that
map identifiers to values. The following is an example of an environment rep-
resented with ListEnv that maps the variable a to the value 3 and maps the
variable b to a closure.

ListEnv [("a",VInt 3),("b",VClos emptyEnv "x" (EVar "x"))]

Page 12

An alternative to ListEnv is FunEnv, which represents an environment as a
function that takes an identifier as an argument and returns a value:

data FunEnv = FunEnv (Id -> Val FunEnv)

As a FunEnv, the above example could be (conceptually) thought of as:

FunEnv (\x -> if x == "a"
then VInt 3
else if x == "b"

then VClos emptyEnv "x" (EVar "x")
else error ("unbound variable: " ++ x))

For this question, you will fill in the blanks in the below code to define a new in-
stance of the Env type class for the FunEnv type. The definition of emptyEnv
is already provided for you, and you’ll need to fill in two blanks to complete the
definitions of extendEnv and lookupInEnv. (Hint: these are one-liners.)

instance Env FunEnv where
emptyEnv :: FunEnv
emptyEnv =

FunEnv (\x -> error ("unbound variable: " ++ x))

extendEnv :: Id -> Val FunEnv -> FunEnv -> FunEnv
extendEnv id val (FunEnv f) = _____(15(a))_______

lookupInEnv :: Id -> FunEnv -> Val FunEnv
lookupInEnv id (FunEnv f) = _____(15(b))_______

a. (13 points) 15(a):

b. (10 points) 15(b):

Page 13

16. The following is part of an implementation of an interpreter for the little language
of Exprs.

eval :: Env a => a -> Expr -> Val a
eval _ (EInt n) = VInt n
eval env (EVar id) = _____(16(a))_______
eval env (ELam id e) = VClos env id e
eval env (EApp e1 e2) = case eval env e1 of
(VClos cEnv cId cExpr) -> _____(16(b))_______
_ -> error "type error!"

eval env (ELet id e1 e2) = eval env (EApp (ELam id e2) e1)

Instead of a concrete type for the env argument, eval’s type signature type vari-
able a that’s constrained by the Env a type class constraint. So, eval ought
to work with any environment representation that correctly implements the Env
interface. (In other words, eval should call lookupInEnv and extendEnv
rather than doing something that would depend on the environment representa-
tion.)

a. (5 points) 16(a):

b. (15 points) 16(b):

Page 14

Part 4: Types and type inference (32 points)

17. (5 points) Which of the following is a unifier
for the types a -> b and Int -> c?

(a) [a / Int, b / Bool -> Bool, c / Bool -> Bool]

(b) [c / b, Int / a]

(c) [a / Int, c / Bool]

(d) (a) and (b)

(e) Cannot unify

18. (5 points) Which of the following is a unifier
for the types Int -> Int -> a and b -> c?

(a) [b / (Int -> Int), c / Int]

(b) [b / Int, c / Int -> a]

(c) [a / Int, c / Int -> Int]

(d) (a) and (b)

(e) Cannot unify

19. (5 points) Which of the following is the most general unifier
for the types Int -> a and b -> String?

(a) [a / Int, b / String]

(b) [a / String, b / Int]

(c) [a / b]

(d) (a) and (b)

(e) Cannot unify

20. (5 points) Which of the following is the most general unifier
for the types a and b -> Bool -> a?

(a) [a / Bool -> a, a / b]

(b) [a / Bool -> a, b / a]

(c) [a / b -> Bool -> a]

(d) (a) and (b)

(e) Cannot unify

Page 15

21. Below are some of the typing rules for the Nano language:

G,(x,T1) |- e :: T2
[T-Lam] --------------------------

G |- (\x -> e) :: T1 -> T2

G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] ---------------------------------------

G |- (e1 e2) :: T2

(x,T) in G
[T-Int] ----------------- [T-Var] -----------------

G |- n :: Int G |- x :: T

Below is a partial typing derivation that shows that the Nano expression
(\x -> x) 3 has type Int. For each blank, fill in a type or the name of a
typing rule to complete the typing derivation.

(x,Int) in [(x,Int)]
[_21(a)_]-------------------------

[(x,Int)] |- x :: _21(b)_
[_21(c)_]------------------------- [_21(d)_]------------------

[] |- \x -> x :: _21(e)_ [] |- 3 :: _21(f)_
[_21(g)_]---

[] |- (\x -> x) 3 :: Int

a. (2 points) 21(a):

b. (2 points) 21(b):

Page 16

c. (2 points) 21(c):

d. (2 points) 21(d):

e. (2 points) 21(e):

f. (2 points) 21(g):

Page 17

Haskell Reference
• (.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)

Function composition.

• (||) :: Bool -> Bool -> Bool

Boolean “or”.

• (++) :: [a] -> [a] -> [a]

Append two lists, e.g.,

> [1,2,3] ++ [4,5]
[1,2,3,4,5]
> "apple" ++ "orange"
"appleorange"

• nub :: [a] -> [a]

Remove duplicate elements from a list, e.g.,

> nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]

• (\\) :: [a] -> [a] -> [a]

Compute the difference of two lists. In the result of xs \\ ys, the first occur-
rence of each element of ys in turn (if any) has been removed from xs. Thus
(xs ++ ys) \\ xs == ys, e.g.,

> ["a","b","c"] \\ ["a"]
["b","c"]
> ["a","b","c","a"] \\ ["a","c"]
["b","a"]

• show :: a -> String

Convert a value to a String, e.g.,

> show 1
"1"

Page 18

