Student name:

CruzID (the part before the “@” in your UCSC email address):

CSE114A, Fall 2024: Midterm Exam

Instructor: Owen Arden

November 1, 2024

Additionally, please write your CruzID at the top of each page.

This exam has 5 questions and 70 total points.

Instructions

Please write directly on the exam.

For multiple choice questions, fill in the letter completely, e.g. from (@) to @

For short response questions, try to keep your answer within the outlined box.

You have 65 minutes to complete this exam. You may leave when you are finished.

This exam is closed book. You may use one double-sided page of notes, but no other materials.
Avoid seeing anyone else’s work or allowing yours to be seen.

Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communicate with
anyone but an exam proctor.

To ensure fairness (and the appearance thereof), proctors will not answer questions about the content of
the exam. If you are unsure of how to interpret a problem description, state your interpretation clearly and
concisely. Reasonable interpretations will be taken into account by graders.

Good luck!

(this page intentionally left blank, you may use it for scratch paper but the contents will not be graded)

CruzID: @ucsc.edu

Part 1: Lambda calculus

Question 1 (12 points)
Consider the following lambda calculus expression, which we will name EXPR1

(\x y z => ITE (OR a b) c
((\w —> ITE (ISZ w) (ADD x y) w) FOUR)) ONE TWO

1.1 (3 points) What are the free variables of EXPR1:
@ x,y,and z
® a,b,and c
© x,v, z,and w
@ Choices (b) and (c)
© None of the above

1.2 (4 points) After a single beta-reduction on EXPR1, what would the resulting expression be?:

@ (\y z —> ITE (OR a b) c
((\w —> ITE (ISZ w) (ADD ONE y) w) FOUR)) TWO

® (\x y z -> ITE (OR a b) c
(ITE (ISZ FOUR) (ADD x y) FOUR)) ONE TWO

© (\y z -—> ITE (OR a b) c
(ITE (ISZ FOUR) (ADD ONE y) FOUR)) TWO

@ Choices (a) and (b)
©® Choices (a) and (c)

1.3 (5 points) What is the normal form of EXPR1:
(@ THREE
® FOUR
© \z -> (a TRUE b) c FOUR
@ \z -> ITE (OR a b) c FOUR
® None of the above

Page 1 of 8

CruzID: @ucsc.edu

Question 2 (12 points)
Recall that =d> in ELSA denotes unfolding a definition. Suppose a new ELSA operator =b~> denotes
a sequence of one or more beta-reductions ending in an expression that cannot be beta-reduced without
expanding a definition.

Reduce the following lambda expression to normal form using =b~> and =d>.
* Hint: =b~> is a little like =~> but can only take beta-reduction steps. Use =b~> to reduce expressions
that contain a redex (the initial expression below is an example of a redex) until you reach an expression

that can’t be beta-reduced because the definitions haven’t been expanded. Then, expand a definition with
=d> and continue to beta-reduce with =b~ > until you reach a normal form with no remaining definitions.

(\x => ITE x FIVE TWO) FALSE

Page 2 of 8

CruzID: @ucsc.edu

Part 2: Haskell

Question 3 (10 points)
Consider the following Haskell expression

let
acc = (0, 0)
val = [(0, 1), (2, 3), (4, 5), (6, T),
foldx = foldr fl acc val
in
foldl f2 (12,34) [foldx]
where
fl (x, y) (u, w) = (x + u, y + w)
f2 (x, y) (u, w) = (x —u, y — w)

3.1 (5 points) What is the type of £17?
@ [Int] -> [Int] -> [Int]
® (Int, Int) -> (Int, Int) —-> (Int,
© Int -> Int -> (Int, Int)
@ None of the above
© Syntax or type error
3.2 (5 points) What is the type of foldx?
@ (Int, Int)
® [Int]

© Int
@ None of the above

© Syntax or type error

Page 3 of 8

Int)

CruzID: @ucsc.edu

Question 4 (24 points)
Recall that the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones.
Starting from 0 and 1, the sequence will be 0,1, 1,2, 3,5,8,13,21, 34,55, - --

Please complete the implementation below of a function that returns the N-th number in Fibonacci sequence
that starts from O and 1.

fib :: Int -> Int
fib n
| blank.1 = 0
| blank 2 =1
| blank.3 = (fib (n - 1)) + (fib (n - 2))

4.1 (3 points) Please fill in the blanks blank_1 in the box below:

4.2 (3 points) Please fill in the blanks blank_2 in the box below:

4.3 (3 points) Please fill in the blanks blank_3 in the box below:

4.4 (5 points) Next, please complete the implementation below of the same function but using tail recursion

fibTR :: Int -> Int
fibTR n = helper n (0,1)
where
helper :: Int -> (Int, Int) -> Int

helper 0 (a,_) = a
helper n (a,b) blank_1

Please fill in the blank blank_1 in the box below:

Page 4 of 8

CruzID:

@ucsc.edu

4.5

(10 points) In addition to the Fibonacci sequence, Factorial sequence is another famous number sequence.
Below is the function that returns the N-th number in the Factorial sequence that starts from 0.

fac :: Int —-> Int
fac n
| n <=1=1
| otherwise = n » fac (n - 1)

Now, please implement the function:
segArray :: (Int -> Int) -> Int -> [Int]

segArray accepts a number sequence function and an integer representing N, and returns an array of
the given number sequence from 0 to the N-th number.

For example, seqArray fib 10 should returns [0,1,1,2,3,5,8,13,21,34,55]

And segArray fac 5 shouldreturns [1,1,2,6,24,120]

Please implement segArray using tail recursion if you can. 7 points for correct implementation, 3
points for correct tail recursive implementation, total 10 possible points.

Page 5 of 8

CruzID: @ucsc.edu

Question 5 (12 points)

5.1 (6 points) Consider the following data type and function definition. What typeclass instances, if any, are
required for the following function to typecheck? Just list names, no definitions are required.

data Triangle =
ASA Int Int Int
| SSS Int Int Int
| SAS Int Int Int

maxTriangle :: Triangle -> [Triangle] -> Triangle
maxTriangle m [] = m
maxTriangle m (t:ts) | m >= t = maxTriangle m ts

| otherwise = maxTriangle t ts

5.2 (6 points) Consider the following function

sameSide :: Triangle -> Triangle -> Bool

sameSide (ASA _ vy _) (ASA _ vy’ _) =y =y’

sameSide (SSS x y z) (ASA _ vy’) =x =y || y=vy" || z ==y’
sameSide (SAS x _ z) _ = True

sameSide _ (ASA _) = False

What would the following expression evaluate to?

sameSide (ASA 1 2 3) (SSS 2 2 2)

@ True
® False

© Type error
(@ Runtime error

© None of the above

Page 6 of 8

CruzID: @ucsc.edu

1 Lambda calculus cheat sheet

—-— Booleans ————————————————————————————————
let TRUE =\x y —> x

let FALSE = \x y —> vy

let ITE = \b x v > b x vy

let NOT \b x v > by x

let AND \bl b2 -> ITE bl b2 FALSE

let OR = \bl b2 -> ITE bl TRUE b2

—— Numbers —————————————————————————————————
let ZERO = \f x—> x
let ONE = \f x —> f x
let TWO = \f x -> £ (f
let THREE = \f x -> £ (f (

let FOUR = \f x —> £ (f (f (f x)))
let FIVE = \f x —> £ (f (f

-— Pairs ——————————————— =
let PAIR = \x y b > b x vy

let FST = \p —-> p TRUE

let SND = \p —-> p FALSE

-— Arithmetic - ——————————"——————————————————

let INC =\n £f x —> f (n £ x)

let ADD =\nm->n INC m

let MUL = \nm -> n (ADD m) ZERO

let ISZ = \n —> n (\z —-> FALSE) TRUE

let DECR = \n -—> —-— decrement n by one —-—

let EQL = \a b -> —— return TRUE if a == b, otherwise FALSE —-
—-— Recursion ———————=————————————\———\——\———————

let FIX = \stp —> (\x —> stp (x x)) (\x —> stp (x x))

Page 7 of 8

CruzID: @ucsc.edu

2 Haskell cheat sheet

data Maybe a = Nothing | Just a
foldr :: (a > b -> b) -> b -> [a] -> Db
foldr f b [] = Db
foldr f b (x:xs) = f x (foldr f b xs)
foldl :: (b > a -—> b) -> b -> [a] -> Db
foldl f b xs = helper b xs

where

helper acc [] = acc

helper acc (x:xs)

filter :: (a —> Bool) —> [a] —> [a]
filter p [] = []
filter p (x:xs)
| p x = x : filter p xs
| otherwise = filter p xs
map :: (a —-> b) —-> [a] —> [b]
map _ [] =[]
map f (x:xs) = £ x : map f xs
flip :: (a > b ->¢) -> b > a -> ¢

flip f x v = £ v x

(++) :: [a]l] —-> [a] -> [a]
(++) [] ys = ¥s
(++) (x:xs) ys = x Xs ++ ys

class Eq a where
(==) :: a —> a —> Bool
(/=) :: a -> a —-> Bool

class (Eq a) => Ord a where

(<) :: a -> a -> Bool
(<=) a —-> a —> Bool
(>) a —> a —> Bool
(>=) a -> a —> Bool

Page 8 of 8

helper (f acc x) xs

