
CSE114A, Fall 2024: Midterm Exam

Instructor: Owen Arden

November 1, 2024

Student name:

CruzID (the part before the “@” in your UCSC email address):

Additionally, please write your CruzID at the top of each page.

This exam has 5 questions and 70 total points.

Instructions

• Please write directly on the exam.

• For multiple choice questions, fill in the letter completely, e.g. from a to a

• For short response questions, try to keep your answer within the outlined box.

• You have 65 minutes to complete this exam. You may leave when you are finished.

• This exam is closed book. You may use one double-sided page of notes, but no other materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Please, no talking. No notes, books, laptops, phones, or other electronic devices. Do not communicate with
anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions about the content of
the exam. If you are unsure of how to interpret a problem description, state your interpretation clearly and
concisely. Reasonable interpretations will be taken into account by graders.

Good luck!

i

(this page intentionally left blank, you may use it for scratch paper but the contents will not be graded)

CruzID: @ucsc.edu

Part 1: Lambda calculus

Question 1 (12 points)
Consider the following lambda calculus expression, which we will name EXPR1

(\x y z -> ITE (OR a b) c
((\w -> ITE (ISZ w) (ADD x y) w) FOUR)) ONE TWO

1.1 (3 points) What are the free variables of EXPR1:
a⃝ x, y, and z
b⃝ a, b, and c
c⃝ x, y, z, and w
d⃝ Choices (b) and (c)
e⃝ None of the above

1.2 (4 points) After a single beta-reduction on EXPR1, what would the resulting expression be?:
a⃝ (\y z -> ITE (OR a b) c

((\w -> ITE (ISZ w) (ADD ONE y) w) FOUR)) TWO

b⃝ (\x y z -> ITE (OR a b) c
(ITE (ISZ FOUR) (ADD x y) FOUR)) ONE TWO

c⃝ (\y z -> ITE (OR a b) c
(ITE (ISZ FOUR) (ADD ONE y) FOUR)) TWO

d⃝ Choices (a) and (b)
e⃝ Choices (a) and (c)

1.3 (5 points) What is the normal form of EXPR1:
a⃝ THREE

b⃝ FOUR

c⃝ \z -> (a TRUE b) c FOUR

d⃝ \z -> ITE (OR a b) c FOUR

e⃝ None of the above

Page 1 of 8

CruzID: @ucsc.edu

Question 2 (12 points)
Recall that =d> in ELSA denotes unfolding a definition. Suppose a new ELSA operator =b∼> denotes
a sequence of one or more beta-reductions ending in an expression that cannot be beta-reduced without
expanding a definition.

Reduce the following lambda expression to normal form using =b∼> and =d>.

• Hint: =b∼> is a little like =∼> but can only take beta-reduction steps. Use =b∼> to reduce expressions
that contain a redex (the initial expression below is an example of a redex) until you reach an expression
that can’t be beta-reduced because the definitions haven’t been expanded. Then, expand a definition with
=d> and continue to beta-reduce with =b∼> until you reach a normal form with no remaining definitions.

(\x -> ITE x FIVE TWO) FALSE

Solution:

(\x -> ITE x FIVE TWO) FALSE
=b∼> ITE FALSE FIVE TWO
=d> (\b x y -> b x y) FALSE FIVE TWO
=b∼> FALSE FIVE TWO
=d> (\x y -> y) FIVE TWO
=b∼> TWO
=d> \f x -> f (f x)

Rubrics:

• +3 points if there is a step =b∼> ITE FALSE FIVE TWO

• +4 points if there is a step =b∼> FALSE FIVE TWO

• +5 points if there is a step =b∼> TWO

NOTE: Do not deduct points if the final =d> is missing

NOTE: Alternative sequences of reduction are possible. In particular, expanding all definitions and then
using a single =b∼>. We will give those answers full points for discovering such a loophole in the question.

Page 2 of 8

CruzID: @ucsc.edu

Part 2: Haskell

Question 3 (10 points)
Consider the following Haskell expression

let
acc = (0, 0)
val = [(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)]
foldx = foldr f1 acc val
in
foldl f2 (12,34) [foldx]

where
f1 (x, y) (u, w) = (x + u, y + w)
f2 (x, y) (u, w) = (x - u, y - w)

3.1 (5 points) What is the type of f1?
a⃝ [Int] -> [Int] -> [Int]

b⃝ (Int, Int) -> (Int, Int) -> (Int, Int)

c⃝ Int -> Int -> (Int, Int)

d⃝ None of the above
e⃝ Syntax or type error

3.2 (5 points) What is the type of foldx?
a⃝ (Int, Int)

b⃝ [Int]

c⃝ Int

d⃝ None of the above
e⃝ Syntax or type error

Page 3 of 8

CruzID: @ucsc.edu

Question 4 (24 points)
Recall that the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones.
Starting from 0 and 1, the sequence will be 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · ·
Please complete the implementation below of a function that returns the N-th number in Fibonacci sequence
that starts from 0 and 1.

fib :: Int -> Int
fib n

| blank 1 = 0
| blank 2 = 1
| blank 3 = (fib (n - 1)) + (fib (n - 2))

4.1 (3 points) Please fill in the blanks blank 1 in the box below:

Solution:

n == 0

NOTE: n <= 0 is also acceptable.

4.2 (3 points) Please fill in the blanks blank 2 in the box below:

Solution:

n == 1

NOTE: n <= 1 is also acceptable.

4.3 (3 points) Please fill in the blanks blank 3 in the box below:

Solution:

otherwise

NOTE: n > 1 is also acceptable.

4.4 (5 points) Next, please complete the implementation below of the same function but using tail recursion

fibTR :: Int -> Int
fibTR n = helper n (0,1)

where
helper :: Int -> (Int, Int) -> Int
helper 0 (a,_) = a
helper n (a,b) = blank 1

Please fill in the blank blank 1 in the box below:

Solution:

helper (n-1) (b, a+b)

Page 4 of 8

CruzID: @ucsc.edu

4.5 (10 points) In addition to the Fibonacci sequence, Factorial sequence is another famous number sequence.
Below is the function that returns the N-th number in the Factorial sequence that starts from 0.

fac :: Int -> Int
fac n

| n <= 1 = 1
| otherwise = n * fac (n - 1)

Now, please implement the function:

seqArray :: (Int -> Int) -> Int -> [Int]

seqArray accepts a number sequence function and an integer representing N, and returns an array of
the given number sequence from 0 to the N-th number.
For example, seqArray fib 10 should returns [0,1,1,2,3,5,8,13,21,34,55]
And seqArray fac 5 should returns [1,1,2,6,24,120]
Please implement seqArray using tail recursion if you can. 7 points for correct implementation, 3
points for correct tail recursive implementation, total 10 possible points.

Solution:

seqArray f n = helper n []
where

helper 0 acc = (f 0):acc
helper n acc = helper (n - 1) ((f n):acc)

Rubrics:

• -10 points if no answer is provided, or the answer is not in something close to Haskell (eg Python)

• -3 to -7 points if the code does not provide the functionality we asked for

• -3 points if the function is not tail recursive

• minor syntax errors are acceptable

• -2 points if the intended meaning of the code is ambiguous (due to major syntax errors etc), but
likely indicates an understanding of the correct implementation.

Page 5 of 8

CruzID: @ucsc.edu

Question 5 (12 points)

5.1 (6 points) Consider the following data type and function definition. What typeclass instances, if any, are
required for the following function to typecheck? Just list names, no definitions are required.

data Triangle =
ASA Int Int Int

| SSS Int Int Int
| SAS Int Int Int

maxTriangle :: Triangle -> [Triangle] -> Triangle
maxTriangle m [] = m
maxTriangle m (t:ts) | m >= t = maxTriangle m ts

| otherwise = maxTriangle t ts

Solution:

• +3 points for Eq

• +3 points for Ord

• -1 point for one or more unnecessary typeclasses

5.2 (6 points) Consider the following function

sameSide :: Triangle -> Triangle -> Bool
sameSide (ASA _ y _) (ASA _ y’ _) = y == y’
sameSide (SSS x y z) (ASA _ y’ _) = x == y’ || y == y’ || z == y’
sameSide (SAS x _ z) _ = True
sameSide _ (ASA _ _ _) = False

What would the following expression evaluate to?

sameSide (ASA 1 2 3) (SSS 2 2 2)

a⃝ True

b⃝ False

c⃝ Type error
d⃝ Runtime error
e⃝ None of the above

Page 6 of 8

CruzID: @ucsc.edu

1 Lambda calculus cheat sheet

-- Booleans --------------------------------
let TRUE =\x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Numbers ---------------------------------
let ZERO = \f x-> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f (f x))))

-- Pairs -----------------------------------
let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Arithmetic ------------------------------
let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE
let DECR = \n -> -- decrement n by one --
let EQL = \a b -> -- return TRUE if a == b, otherwise FALSE --

-- Recursion -------------------------------
let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

Page 7 of 8

CruzID: @ucsc.edu

2 Haskell cheat sheet

data Maybe a = Nothing | Just a

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

class (Eq a) => Ord a where
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
...

Page 8 of 8

