
CSE130 - WI19
PA5 Discussion

Agenda

● Tips on Warm-Up

● Tips on Unification

● Tips on Inference

Warm-Up ToDo

freeTVars :: a -> [TVar]

lookupTVar :: TVar -> Subst -> Type

removeTVar :: TVar -> Subst -> Subst

apply :: Subst -> a -> a

extendSubst :: Subst -> TVar -> Type -> Subst

Warm-Up ToDo

freeTVars :: a -> [TVar]

lookupTVar :: TVar -> Subst -> Type

removeTVar :: TVar -> Subst -> Subst

apply :: Subst -> a -> a

extendSubst :: Subst -> TVar -> Type -> Subst

freeTVars

freeTVars :: Type -> [TVar]

How to implement

1. Pattern-match the Type constructors
2. NOT all Type constructors have free type variables.

Which of them do not? TInt is one of them
a. Return the []for these cases

3. The trickiest case is handling the | Type1 :=> Type2
constructor.
a. Here you’ll have two inner constructors to handle
b. Handle duplicates!

freeTVars :: Poly -> [TVar]

How to implement

1. Pattern-match the Poly constructors
2. Call freeTVars recursively
3. One of these Poly constructors has bound variables.

Which one is it? A bounded variable is not free
(definition) so make sure to remove them!

Warm-Up ToDo

freeTVars :: a -> [TVar]

lookupTVar :: TVar -> Subst -> Type

removeTVar :: TVar -> Subst -> Subst

apply :: Subst -> a -> a

extendSubst :: Subst -> TVar -> Type -> Subst

lookupTVar :: TVar -> Subst -> Type

removeTVar :: TVar -> Subst -> Subst

How to implement

1. The Subst parameter is just a list. You know how to
traverse these in Haskell. Hint: use recursion!

2. The main trick is that, in removeTVar you’re building
a list that is (potentially) skipping an element from the
original list.

Warm-Up ToDo

freeTVars :: a -> [TVar]

lookupTVar :: TVar -> Subst -> Type

removeTVar :: TVar -> Subst -> Subst

apply :: Subst -> a -> a

extendSubst :: Subst -> TVar -> Type -> Subst

apply :: Subst -> a -> a

How to implement

1. Pattern-match all constructors in Type and Poly

2. You will have to re-use lookupTVar and
removeTVar but not necessarily both of them for the
same data class (Type and Poly)

3. Structurally similar to the implementation of freeTVars

Warm-Up ToDo

freeTVars :: a -> [TVar]

lookupTVar :: TVar -> Subst -> Type

removeTVar :: TVar -> Subst -> Subst

apply :: Subst -> a -> a

extendSubst :: Subst -> TVar -> Type -> Subst

extendSubst :: Subst -> TVar -> Type -> Subst

How to implement

1. Can be a one-liner

2. Re-use the apply to propagate the newly added
substitution information to pre-existing tuples in the
array

Agenda

● Tips on Warm-Up

● Tips on Unification

● Tips on Inference

Unification ToDo

unifyTVar :: InferState -> TVar -> Type -> InferState

unify :: InferState -> Type -> Type -> InferState

Unification ToDo

unifyTVar :: InferState -> TVar -> Type -> InferState

unify :: InferState -> Type -> Type -> InferState

unifyTVar :: InferState -> TVar -> Type -> InferState

How to implement

1. Super simple
2. 3 cases

a. Unify “a” with “a” <= In README
b. Unify “a” with a type containing a free-var “a” <= In

README
c. Unify “a” with a type not containing a free-var “a” <=

you’ll use extendState

Unification ToDo

unifyTVar :: InferState -> TVar -> Type -> InferState

unify :: InferState -> Type -> Type -> InferState

unify :: InferState -> Type -> Type -> InferState

How to implement the trickiest parts

1. When either Type argument is a TVar, then delegate
to unifyTVar

2. The trickiest case is when both Type arguments are
Type1 :=> Type2.
a. Unify both Type1s.
b. Propagate the newfound substitutions onto the

Type2. You should already know what method
does this

c. Unify both Type2s.

Agenda

● Tips on Warm-Up

● Tips on Unification

● Tips on Inference

Type Inference ToDo

generalize :: TypeEnv -> Type -> Poly

instantiate :: Int -> Poly -> (Int, Type)

infer :: InferState -> TypeEnv -> Expr -> (InferState, Type)

Type Inference ToDo

generalize :: TypeEnv -> Type -> Poly

instantiate :: Int -> Poly -> (Int, Type)

infer :: InferState -> TypeEnv -> Expr -> (InferState, Type)

generalize :: TypeEnv -> Type -> Poly

How to implement

1. Get all free type variables from the type that do not
appear in the enviroment. Use freeTVars to get this

2. Make sure to remove duplicate free variables

3. Add ForAlls for all these type variables. Recursion
and/or folding are your friends.

Type Inference ToDo

generalize :: TypeEnv -> Type -> Poly

instantiate :: Int -> Poly -> (Int, Type)

infer :: InferState -> TypeEnv -> Expr -> (InferState, Type)

instantiate :: Int -> Poly -> (Int, Type)

How to implement

1. You may need a helper function to keep track of fresh
variables.

2. 2 cases: Mono and Poly
3. Poly case: add new fresh variable for the bounded type

variable to the enviroment (freshTV) is your friend.
Don’t forget to increase the counter

4. Mono case: propagation substitutions w/ apply

Type Inference ToDo

generalize :: TypeEnv -> Type -> Poly

instantiate :: Int -> Poly -> (Int, Type)

infer :: InferState -> TypeEnv -> Expr -> (InferState, Type)

infer :: InferState -> TypeEnv -> Expr -> (InferState, Type)

General Strategy

1. I can’t give much away here
2. The lecture notes help *a lot*
3. Generalize in the let case
4. Extend the type enviroment in Let and Lam cases
5. In EBin and EIf, construct expressions that use your

Prelude types
6. Consult with the typing judgements / rules on the slides!

