
CSE 116, Fall 2019 Midterm

Section Points Score
Part I 40 points
Part II 56 points
Total 96 points

Instructions

• You have 95 minutes to complete this exam.

• This exam is closed book. You may use one double-sided page of notes, but no other
materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• To ensure fairness (and the appearance thereof), proctors will not answer questions
about the content of the exam. If you are unsure of how to interpret a problem
description, state your interpretation clearly and concisely. Reasonable interpretations
will be taken into account by graders.

NAME: __

CruzID: _______________________________ @ucsc.edu

1

Part I: Lambda calculus
1. [16pts] Use β-reductions to evaluate the following lambda term to a normal form.

(A) ((\p q -> p q) ((\x -> x) (\a b -> a))) (\k -> k)

(B) (\x y -> (y x) (\p q -> p)) (\i -> i) (\j -> j)

2

2. [8pts] For each bound occurrence of a variable in the following lambda terms, draw an
arrow pointing to its binder. For each free occurrence, draw a circle around the variable.

(A) (\a -> b (\b a -> a b))

(B) (\p q r -> (p (\q p -> (r q))) (q p))

3. [16pts] Fill in a lambda calculus expression for each blank in the program below to
define a function PROD where (PROD n) returns the product of numbers between n
and one. You may use any of the functions defined on the Lambda Calculus Cheat
Sheet on the back page. Any other helper functions you must define yourself. Your
implementation may assume that PROD is never called with ZERO.

let PROD1 = \f n -> ITE _____(A)_______
_____(B)_______
_____(C)_______

let PROD = ______(D)_______

(A)

(B)

(C)

(D)

3

Part II: Haskell

4. [5pts] What does the following Haskell program evaluate to?

let f = (\x -> \y -> x + y)
g = f 5
h = \f n -> f (f n)

in
h g 3

(a) Type Error
(b) 8

(c) 13

(d) \f -> f (f 8)

(e) 16

5. [5pts] What is the most general type of the Haskell function foo?

foo bar (x, y)
| bar x = y ++ y
| otherwise = y

(a) (a -> b) -> (a,b) -> [b]

(b) (String -> Bool) -> (String, String) -> String

(c) (a -> Bool) -> (a, a) -> [a]

(d) (Bool -> a) -> [b] -> [b]

(e) (a -> Bool) -> (a, [b]) -> [b]

4

For the following questions, consider the data types defined below.

data TrickOrTreat = Trick Prank | Treat Candy

data Prank = Prank { desc :: String , legal :: YNM }

data YNM = Yes | No | Maybe

data Candy = Candy { pieces :: Int , kind :: Kind , rating :: Int}

data Kind = Chocolate | HardCandy | Gummies

6. [21pts] A case expression is exhaustive if all possible values are matched by at least
one pattern. A pattern is overlapping if previous patterns match all values it matches.
Assume t has type TrickOrTreat and do the following:

• For each pattern in each case, provide a value that matches on the pattern.
• If the pattern is overlapped by previous patterns, write “N/A”.
• Determine if the case expression is exhaustive and circle Exhaustive or Non-exhaustive
as appropriate.

• For non-exhaustive case expressions, write a value that does not match any of its
patterns.

(a) case t of

_______________________ Trick (Prank _ Yes) -> ()

_______________________ Trick (Prank d No) -> ()

_______________________ Trick _ -> ()

_______________________ _ -> ()

_______________________ [Exhaustive / Non -exhaustive]

5

(b) case t of

_______________________ Treat (Candy _ k r) | r > 3 -> ()

_______________________ Trick (Prank d l) -> ()

_______________________ Treat c | (rating c) < 3 -> ()

_______________________ [Exhaustive / Non -exhaustive]

(c) case t of

_______________________ Treat c -> ()

_______________________ Treat (Candy n Chocolate r) -> ()

_______________________ Trick p -> ()

_______________________ [Exhaustive / Non -exhaustive]

(d) case t of

____________________ Trick (Prank "snakes on plane" No) -> ()

____________________ Treat (Candy 99 Gummies r) -> ()

____________________ Treat _ -> ()

____________________ [Exhaustive / Non -exhaustive]

6

7. Consider a binary search tree where each internal node has a value i and two child
subtrees. The left child contains all nodes with values less than or equal to i, and the
right child contains all nodes with values strictly greater than i.

Figure 1: A binary search tree

(A) [5pts] Using the following ADT, create a Tree that represents the binary search
tree in Figure 1.

data Tree = Leaf | Node Int Tree Tree

(B) [10pts] Define the function max, which returns the highest value in a binary search
tree represented by a Tree value, or 0 if the tree is empty. For example, if t is
the tree in Figure 1, then max t evaluates to 14. Full credit requires an efficient
traversal of the tree (e.g., not an exhaustive one). You may define helper functions
if desired, but you may not use any library functions except ==, >=, or <=.

max :: Tree -> Int

7

(C) [10pts] Define the function contains, which returns True if a number n is contained
in a binary search tree t. For example, if t is the tree in Figure 1, then contains
7 t returns True, but contains 5 t returns False. Full credit requires an efficient
traversal of the tree (e.g., not an exhaustive one). You may define helper functions
if desired, but you may not use any library functions except ==, >=, or <=.

contains :: Int -> Tree -> Bool

8

9

1 Lambda calculus cheat sheet

-- Booleans --------------------------------
let TRUE =\x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Numbers ---------------------------------
let ZERO = \f x-> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x))
let FIVE = \f x -> f (f (f (f (f x))

-- Arithmetic ------------------------------
let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> -- return TRUE if n == 0 --
let DECR = \n -> -- decrement n by one --
let EQL = \a b -> -- return TRUE if a == b, otherwise FALSE --

-- Recursion -------------------------------
let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

10

	Lambda calculus cheat sheet

